Configuration polynomials under contact equivalence
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 793-812.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
Configuration polynomials generalize the classical Kirchhoff polynomial defined by a graph. Their study sheds light on certain polynomials appearing in Feynman integrands. Contact equivalence provides a way to study the associated configuration hypersurface. In the contact equivalence class of any configuration polynomial we identify a polynomial with minimal number of variables; it is a configuration polynomial. This minimal number is bounded by $$, where is the rank of the underlying matroid. We show that the number of equivalence classes is finite exactly up to rank and list explicit normal forms for these classes.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/154
Publié le :
DOI : 10.4171/aihpd/154
Classification :
14-XX, 05-XX, 81-XX
Mots-clés : configuration, matroid, contact equivalence, Feynman, Kirchhoff, Symanzik
Mots-clés : configuration, matroid, contact equivalence, Feynman, Kirchhoff, Symanzik
@article{AIHPD_2022__9_4_793_0, author = {Denham, Graham and Pol, Delphine and Schulze, Mathias and Walther, Uli}, title = {Configuration polynomials under contact equivalence}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {793--812}, volume = {9}, number = {4}, year = {2022}, doi = {10.4171/aihpd/154}, mrnumber = {4525145}, zbl = {1507.14077}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/aihpd/154/} }
TY - JOUR AU - Denham, Graham AU - Pol, Delphine AU - Schulze, Mathias AU - Walther, Uli TI - Configuration polynomials under contact equivalence JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 793 EP - 812 VL - 9 IS - 4 UR - http://archive.numdam.org/articles/10.4171/aihpd/154/ DO - 10.4171/aihpd/154 LA - en ID - AIHPD_2022__9_4_793_0 ER -
%0 Journal Article %A Denham, Graham %A Pol, Delphine %A Schulze, Mathias %A Walther, Uli %T Configuration polynomials under contact equivalence %J Annales de l’Institut Henri Poincaré D %D 2022 %P 793-812 %V 9 %N 4 %U http://archive.numdam.org/articles/10.4171/aihpd/154/ %R 10.4171/aihpd/154 %G en %F AIHPD_2022__9_4_793_0
Denham, Graham; Pol, Delphine; Schulze, Mathias; Walther, Uli. Configuration polynomials under contact equivalence. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 793-812. doi : 10.4171/aihpd/154. http://archive.numdam.org/articles/10.4171/aihpd/154/
Cité par Sources :