Configuration polynomials under contact equivalence
Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 793-812.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Configuration polynomials generalize the classical Kirchhoff polynomial defined by a graph. Their study sheds light on certain polynomials appearing in Feynman integrands. Contact equivalence provides a way to study the associated configuration hypersurface. In the contact equivalence class of any configuration polynomial we identify a polynomial with minimal number of variables; it is a configuration polynomial. This minimal number is bounded by $$, where r is the rank of the underlying matroid. We show that the number of equivalence classes is finite exactly up to rank 3 and list explicit normal forms for these classes.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/154
Classification : 14-XX, 05-XX, 81-XX
Mots-clés : configuration, matroid, contact equivalence, Feynman, Kirchhoff, Symanzik
@article{AIHPD_2022__9_4_793_0,
     author = {Denham, Graham and Pol, Delphine and Schulze, Mathias and Walther, Uli},
     title = {Configuration polynomials under contact equivalence},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {793--812},
     volume = {9},
     number = {4},
     year = {2022},
     doi = {10.4171/aihpd/154},
     mrnumber = {4525145},
     zbl = {1507.14077},
     language = {en},
     url = {http://archive.numdam.org/articles/10.4171/aihpd/154/}
}
TY  - JOUR
AU  - Denham, Graham
AU  - Pol, Delphine
AU  - Schulze, Mathias
AU  - Walther, Uli
TI  - Configuration polynomials under contact equivalence
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2022
SP  - 793
EP  - 812
VL  - 9
IS  - 4
UR  - http://archive.numdam.org/articles/10.4171/aihpd/154/
DO  - 10.4171/aihpd/154
LA  - en
ID  - AIHPD_2022__9_4_793_0
ER  - 
%0 Journal Article
%A Denham, Graham
%A Pol, Delphine
%A Schulze, Mathias
%A Walther, Uli
%T Configuration polynomials under contact equivalence
%J Annales de l’Institut Henri Poincaré D
%D 2022
%P 793-812
%V 9
%N 4
%U http://archive.numdam.org/articles/10.4171/aihpd/154/
%R 10.4171/aihpd/154
%G en
%F AIHPD_2022__9_4_793_0
Denham, Graham; Pol, Delphine; Schulze, Mathias; Walther, Uli. Configuration polynomials under contact equivalence. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 4, pp. 793-812. doi : 10.4171/aihpd/154. http://archive.numdam.org/articles/10.4171/aihpd/154/

Cité par Sources :