We introduce a new method to evaluate algebraic integrals over the simplex numerically. This new approach employs techniques from tropical geometry and exceeds the capabilities of existing numerical methods by an order of magnitude. The method can be improved further by exploiting the geometric structure of the underlying integrand. As an illustration of this, we give a specialized integration algorithm for a class of integrands that exhibit the form of a generalized permutahedron. This class includes integrands for scattering amplitudes and parametric Feynman integrals with tame kinematics. A proof-of-concept implementation is provided with which Feynman integrals up to loop order 17 can be evaluated.
Publié le :
DOI : 10.4171/aihpd/158
Mots-clés : algebraic integrals, numerical integration, Feynman integrals, tropical geometry, Monte Carlo
@article{AIHPD_2023__10_4_635_0, author = {Borinsky, Michael}, title = {Tropical {Monte} {Carlo} quadrature for {Feynman} integrals}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {635--685}, volume = {10}, number = {4}, year = {2023}, doi = {10.4171/aihpd/158}, mrnumber = {4653794}, zbl = {07755203}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/aihpd/158/} }
TY - JOUR AU - Borinsky, Michael TI - Tropical Monte Carlo quadrature for Feynman integrals JO - Annales de l’Institut Henri Poincaré D PY - 2023 SP - 635 EP - 685 VL - 10 IS - 4 UR - http://archive.numdam.org/articles/10.4171/aihpd/158/ DO - 10.4171/aihpd/158 LA - en ID - AIHPD_2023__10_4_635_0 ER -
Borinsky, Michael. Tropical Monte Carlo quadrature for Feynman integrals. Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 4, pp. 635-685. doi : 10.4171/aihpd/158. http://archive.numdam.org/articles/10.4171/aihpd/158/
Cité par Sources :