Hopf monoids, permutohedral cones, and generalized retarded functions
Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 3, pp. 555-609.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The commutative Hopf monoid of set compositions is a fundamental Hopf monoid internal to vector species, having undecorated bosonic Fock space the combinatorial Hopf algebra of quasisymmetric functions. We construct a geometric realization of this Hopf monoid over the adjoint of the (essentialized) braid hyperplane arrangement, which identifies the monomial basis with signed characteristic functions of the interiors of permutohedral tangent cones. We show that the indecomposable quotient Lie coalgebra is obtained by restricting functions to chambers of the adjoint arrangement, i.e., by quotienting out the higher codimensions. The resulting functions are characterized by the Steinmann relations of axiomatic quantum field theory, demonstrating an equivalence between the Steinmann relations, tangent cones to (generalized) permutohedra, and having algebraic structure internal to species. Our results give a new interpretation of a construction appearing in the mathematically rigorous formulation of renormalization by Epstein–Glaser, called causal perturbation theory. In particular, we show that operator products of time-ordered products correspond to the H-basis of the cocommutative Hopf monoid of set compositions, and generalized retarded products correspond to a spanning set of its primitive part Lie algebra.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/159
Classification : 18-XX, 14-XX, 51-XX, 81-XX
Mots-clés : Restricted all-subset arrangement, resonance arrangement, species, Hopf monoids, Steinmann relations, generalized retarded function, axiomatic quantum field theory, generalized permutohedra
@article{AIHPD_2023__10_3_555_0,
     author = {Norledge, William and Ocneanu, Adrian},
     title = {Hopf monoids, permutohedral cones, and generalized retarded functions},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {555--609},
     volume = {10},
     number = {3},
     year = {2023},
     doi = {10.4171/aihpd/159},
     mrnumber = {4620364},
     zbl = {1523.18020},
     language = {en},
     url = {http://archive.numdam.org/articles/10.4171/aihpd/159/}
}
TY  - JOUR
AU  - Norledge, William
AU  - Ocneanu, Adrian
TI  - Hopf monoids, permutohedral cones, and generalized retarded functions
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2023
SP  - 555
EP  - 609
VL  - 10
IS  - 3
UR  - http://archive.numdam.org/articles/10.4171/aihpd/159/
DO  - 10.4171/aihpd/159
LA  - en
ID  - AIHPD_2023__10_3_555_0
ER  - 
%0 Journal Article
%A Norledge, William
%A Ocneanu, Adrian
%T Hopf monoids, permutohedral cones, and generalized retarded functions
%J Annales de l’Institut Henri Poincaré D
%D 2023
%P 555-609
%V 10
%N 3
%U http://archive.numdam.org/articles/10.4171/aihpd/159/
%R 10.4171/aihpd/159
%G en
%F AIHPD_2023__10_3_555_0
Norledge, William; Ocneanu, Adrian. Hopf monoids, permutohedral cones, and generalized retarded functions. Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 3, pp. 555-609. doi : 10.4171/aihpd/159. http://archive.numdam.org/articles/10.4171/aihpd/159/

Cité par Sources :