Duality and bicrystals on infinite binary matrices
Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 4, pp. 715-779.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The set of finite binary matrices of a given size is known to carry a finite type A bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums together with a natural generalisation of the 2M-X Pitman transform. Next, we show that, once the relevant formalism on families of infinite binary matrices is introduced, this is a particular case of a much more general phenomenon. Each such family of matrices is proved to be endowed with Kac–Moody bicrystal and tricrystal structures defined from the classical root systems. Moreover, we give an explicit decomposition of these multicrystals, reminiscent of the decomposition of characters yielding the Cauchy identities.

Publié le :
DOI : 10.4171/aihpd/165
Classification : 05-XX, 17-XX, 81-XX
@article{AIHPD_2023__10_4_715_0,
     author = {Gerber, Thomas and Lecouvey, C\'edric},
     title = {Duality and bicrystals on infinite binary matrices},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {715--779},
     volume = {10},
     number = {4},
     year = {2023},
     doi = {10.4171/aihpd/165},
     mrnumber = {4653796},
     zbl = {1525.05194},
     language = {en},
     url = {http://archive.numdam.org/articles/10.4171/aihpd/165/}
}
TY  - JOUR
AU  - Gerber, Thomas
AU  - Lecouvey, Cédric
TI  - Duality and bicrystals on infinite binary matrices
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2023
SP  - 715
EP  - 779
VL  - 10
IS  - 4
UR  - http://archive.numdam.org/articles/10.4171/aihpd/165/
DO  - 10.4171/aihpd/165
LA  - en
ID  - AIHPD_2023__10_4_715_0
ER  - 
%0 Journal Article
%A Gerber, Thomas
%A Lecouvey, Cédric
%T Duality and bicrystals on infinite binary matrices
%J Annales de l’Institut Henri Poincaré D
%D 2023
%P 715-779
%V 10
%N 4
%U http://archive.numdam.org/articles/10.4171/aihpd/165/
%R 10.4171/aihpd/165
%G en
%F AIHPD_2023__10_4_715_0
Gerber, Thomas; Lecouvey, Cédric. Duality and bicrystals on infinite binary matrices. Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 4, pp. 715-779. doi : 10.4171/aihpd/165. http://archive.numdam.org/articles/10.4171/aihpd/165/

Cité par Sources :