In this paper we study the Brauer loop model on a strip and the associated quantum Knizhnik–Zamolodchikov (qKZ) equation. We show that the minimal degree solution of the Brauer qKZ equation with one of four di�erent possible boundary conditions, gives the multidegrees of the irreducible components of generalizations of the Brauer loop scheme of [16, Knutson–Zinn-Justin ’07] with one of four kinds of symplectic-type symmetry. This is accomplished by studying these irreducible components, which are indexed by link patterns, and describing the geometric action of Brauer generators on them. We also provide recurrence relations for the multidegrees and compute the sum rules (multidegrees of the whole schemes).
Publié le :
DOI : 10.4171/aihpd/28
Mots-clés : Brauer algebra, quantum Knizhnik–Zamolodchikov equation, equivariant cohomology, Loop model
@article{AIHPD_2016__3_2_163_0, author = {Ponsaing, Anita and Zinn-Justin, Paul}, title = {Type $\widehat{\mathrm C}$ {Brauer} loop schemes and loop model with boundaries}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {163--255}, volume = {3}, number = {2}, year = {2016}, doi = {10.4171/aihpd/28}, mrnumber = {3506076}, zbl = {1348.82031}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/aihpd/28/} }
TY - JOUR AU - Ponsaing, Anita AU - Zinn-Justin, Paul TI - Type $\widehat{\mathrm C}$ Brauer loop schemes and loop model with boundaries JO - Annales de l’Institut Henri Poincaré D PY - 2016 SP - 163 EP - 255 VL - 3 IS - 2 UR - http://archive.numdam.org/articles/10.4171/aihpd/28/ DO - 10.4171/aihpd/28 LA - en ID - AIHPD_2016__3_2_163_0 ER -
%0 Journal Article %A Ponsaing, Anita %A Zinn-Justin, Paul %T Type $\widehat{\mathrm C}$ Brauer loop schemes and loop model with boundaries %J Annales de l’Institut Henri Poincaré D %D 2016 %P 163-255 %V 3 %N 2 %U http://archive.numdam.org/articles/10.4171/aihpd/28/ %R 10.4171/aihpd/28 %G en %F AIHPD_2016__3_2_163_0
Ponsaing, Anita; Zinn-Justin, Paul. Type $\widehat{\mathrm C}$ Brauer loop schemes and loop model with boundaries. Annales de l’Institut Henri Poincaré D, Tome 3 (2016) no. 2, pp. 163-255. doi : 10.4171/aihpd/28. http://archive.numdam.org/articles/10.4171/aihpd/28/
Cité par Sources :