The phase transition in random regular exact cover
Annales de l’Institut Henri Poincaré D, Tome 3 (2016) no. 3, pp. 349-362.

A k-uniform, d-regular instance of EXACT COVER is a family of m sets Fn,d,k={Sj{1,...,n}}, where each subset has size k and each 1in is contained in d of the Sj. It is satisfiable if there is a subset T{1,...,n} such that |TSj|=1 for all j. Alternately, we can consider it a d-regular instance of POSITIVE 1-IN-k SAT, i.e., a Boolean formula with m clauses and n variables where each clause contains k variables and demands that exactly one of them is true. We determine the satisfiability threshold for random instances of this type with k>2. Letting

d=lnk(k-1)(-ln(1-1/k))+1,

we show that Fn,d,k is satisfiable with high probability if d<d and unsatisfiable with high probability if d>d. We do this with a simple application of the first and second moment methods, boosting the probability of satisfiability below d to 1-o(1) using the small subgraph conditioning method.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/31
Classification : 68-XX, 05-XX, 82-XX
Mots-clés : Random structures, phase transitions, Boolean formulas, satisfiability, NP-complete problems, second moment method, small subgraph conditioning.
@article{AIHPD_2016__3_3_349_0,
     author = {Moore, Cristopher},
     title = {The phase transition in random regular exact cover},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {349--362},
     volume = {3},
     number = {3},
     year = {2016},
     doi = {10.4171/aihpd/31},
     zbl = {1353.68210},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpd/31/}
}
TY  - JOUR
AU  - Moore, Cristopher
TI  - The phase transition in random regular exact cover
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2016
SP  - 349
EP  - 362
VL  - 3
IS  - 3
UR  - https://www.numdam.org/articles/10.4171/aihpd/31/
DO  - 10.4171/aihpd/31
LA  - en
ID  - AIHPD_2016__3_3_349_0
ER  - 
%0 Journal Article
%A Moore, Cristopher
%T The phase transition in random regular exact cover
%J Annales de l’Institut Henri Poincaré D
%D 2016
%P 349-362
%V 3
%N 3
%U https://www.numdam.org/articles/10.4171/aihpd/31/
%R 10.4171/aihpd/31
%G en
%F AIHPD_2016__3_3_349_0
Moore, Cristopher. The phase transition in random regular exact cover. Annales de l’Institut Henri Poincaré D, Tome 3 (2016) no. 3, pp. 349-362. doi : 10.4171/aihpd/31. https://www.numdam.org/articles/10.4171/aihpd/31/
  • Panagiotou, Konstantinos; Pasch, Matija Satisfiability thresholds for regular occupation problems, Combinatorics, Probability and Computing (2025), p. 1 | DOI:10.1017/s0963548324000440
  • Heckel, Annika; Kaufmann, Marc; Müller, Noela; Pasch, Matija The hitting time of clique factors, Random Structures Algorithms, Volume 65 (2024) no. 2, p. 275 | DOI:10.1002/rsa.21218
  • Gielen, Steffen; Menéndez-Pidal, Lucía Unitarity, clock dependence and quantum recollapse in quantum cosmology, Classical and Quantum Gravity, Volume 39 (2022) no. 7, p. 075011 | DOI:10.1088/1361-6382/ac504f
  • Ayre, Peter; Coja-Oghlan, Amin; Gao, Pu; Müller, Noëla The Satisfiability Threshold For Random Linear Equations, Combinatorica, Volume 40 (2020) no. 2, p. 179 | DOI:10.1007/s00493-019-3897-3
  • RASSMANN, FELICIA On the Number of Solutions in Random Graphk-Colouring, Combinatorics, Probability and Computing, Volume 28 (2019) no. 1, p. 130 | DOI:10.1017/s0963548318000251
  • Coja-Oghlan, Amin; Efthymiou, Charilaos; Jaafari, Nor; Kang, Mihyun; Kapetanopoulos, Tobias Charting the Replica Symmetric Phase, Communications in Mathematical Physics, Volume 359 (2018) no. 2, p. 603 | DOI:10.1007/s00220-018-3096-x

Cité par 6 documents. Sources : Crossref