An isoradial graph is a planar graph in which each face is inscribable into a circle of common radius. We study the 2-dimensional perfect matchings on a bipartite isoradial graph, obtained from the union of an isoradial graph and its interior dual graph. Using the isoradial graph to approximate a simply-connected domain bounded by a simple closed curve, by letting the mesh size go to zero, we prove that in the scaling limit, the distribution of height is conformally invariant and converges to a Gaussian free �field.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/41
Publié le :
DOI : 10.4171/aihpd/41
Classification :
82-XX, 30-XX, 60-XX
Mots-clés : Dimer model, perfect matching, conformal invariance, Gaussian free field, isoradial graph
Mots-clés : Dimer model, perfect matching, conformal invariance, Gaussian free field, isoradial graph
@article{AIHPD_2017__4_3_273_0, author = {Li, Zhongyang}, title = {Conformal invariance of dimer heights on isoradial double graphs}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {273--307}, volume = {4}, number = {3}, year = {2017}, doi = {10.4171/aihpd/41}, mrnumber = {3713018}, zbl = {1377.82019}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/aihpd/41/} }
TY - JOUR AU - Li, Zhongyang TI - Conformal invariance of dimer heights on isoradial double graphs JO - Annales de l’Institut Henri Poincaré D PY - 2017 SP - 273 EP - 307 VL - 4 IS - 3 UR - http://archive.numdam.org/articles/10.4171/aihpd/41/ DO - 10.4171/aihpd/41 LA - en ID - AIHPD_2017__4_3_273_0 ER -
Li, Zhongyang. Conformal invariance of dimer heights on isoradial double graphs. Annales de l’Institut Henri Poincaré D, Tome 4 (2017) no. 3, pp. 273-307. doi : 10.4171/aihpd/41. http://archive.numdam.org/articles/10.4171/aihpd/41/
Cité par Sources :