The speed of growth for a particular stochastic growth model introduced by Borodin and Ferrari in [5], which belongs to the KPZ anisotropic universality class, was computed using multi-time correlations. The model was recently generalized by Toninelli in [38] and for this generalization the stationarymeasure is known but the time correlations are unknown. In this note, we obtain algebraic and combinatorial proofs for the expression of the speed of growth from the prescribed dynamics.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/45
Publié le :
DOI : 10.4171/aihpd/45
Classification :
05-XX, 60-XX, 82-XX
Mots-clés : Random surfaces, interacting particle systems, random tilings, limit shapes, determinantal processes, Kasteleyn matrices
Mots-clés : Random surfaces, interacting particle systems, random tilings, limit shapes, determinantal processes, Kasteleyn matrices
@article{AIHPD_2017__4_4_453_0, author = {Chhita, Sunil and Ferrari, Patrik L.}, title = {A combinatorial identity for the speed of growth in an anisotropic {KPZ} model}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {453--477}, volume = {4}, number = {4}, year = {2017}, doi = {10.4171/aihpd/45}, zbl = {1378.05022}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/aihpd/45/} }
TY - JOUR AU - Chhita, Sunil AU - Ferrari, Patrik L. TI - A combinatorial identity for the speed of growth in an anisotropic KPZ model JO - Annales de l’Institut Henri Poincaré D PY - 2017 SP - 453 EP - 477 VL - 4 IS - 4 UR - http://archive.numdam.org/articles/10.4171/aihpd/45/ DO - 10.4171/aihpd/45 LA - en ID - AIHPD_2017__4_4_453_0 ER -
%0 Journal Article %A Chhita, Sunil %A Ferrari, Patrik L. %T A combinatorial identity for the speed of growth in an anisotropic KPZ model %J Annales de l’Institut Henri Poincaré D %D 2017 %P 453-477 %V 4 %N 4 %U http://archive.numdam.org/articles/10.4171/aihpd/45/ %R 10.4171/aihpd/45 %G en %F AIHPD_2017__4_4_453_0
Chhita, Sunil; Ferrari, Patrik L. A combinatorial identity for the speed of growth in an anisotropic KPZ model. Annales de l’Institut Henri Poincaré D, Tome 4 (2017) no. 4, pp. 453-477. doi : 10.4171/aihpd/45. http://archive.numdam.org/articles/10.4171/aihpd/45/
Cité par Sources :