The speed of growth for a particular stochastic growth model introduced by Borodin and Ferrari in [5], which belongs to the KPZ anisotropic universality class, was computed using multi-time correlations. The model was recently generalized by Toninelli in [38] and for this generalization the stationarymeasure is known but the time correlations are unknown. In this note, we obtain algebraic and combinatorial proofs for the expression of the speed of growth from the prescribed dynamics.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/45
Publié le :
DOI : 10.4171/aihpd/45
Classification :
05-XX, 60-XX, 82-XX
Mots-clés : Random surfaces, interacting particle systems, random tilings, limit shapes, determinantal processes, Kasteleyn matrices
Mots-clés : Random surfaces, interacting particle systems, random tilings, limit shapes, determinantal processes, Kasteleyn matrices
@article{AIHPD_2017__4_4_453_0, author = {Chhita, Sunil and Ferrari, Patrik L.}, title = {A combinatorial identity for the speed of growth in an anisotropic {KPZ} model}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {453--477}, volume = {4}, number = {4}, year = {2017}, doi = {10.4171/aihpd/45}, zbl = {1378.05022}, language = {en}, url = {https://www.numdam.org/articles/10.4171/aihpd/45/} }
TY - JOUR AU - Chhita, Sunil AU - Ferrari, Patrik L. TI - A combinatorial identity for the speed of growth in an anisotropic KPZ model JO - Annales de l’Institut Henri Poincaré D PY - 2017 SP - 453 EP - 477 VL - 4 IS - 4 UR - https://www.numdam.org/articles/10.4171/aihpd/45/ DO - 10.4171/aihpd/45 LA - en ID - AIHPD_2017__4_4_453_0 ER -
%0 Journal Article %A Chhita, Sunil %A Ferrari, Patrik L. %T A combinatorial identity for the speed of growth in an anisotropic KPZ model %J Annales de l’Institut Henri Poincaré D %D 2017 %P 453-477 %V 4 %N 4 %U https://www.numdam.org/articles/10.4171/aihpd/45/ %R 10.4171/aihpd/45 %G en %F AIHPD_2017__4_4_453_0
Chhita, Sunil; Ferrari, Patrik L. A combinatorial identity for the speed of growth in an anisotropic KPZ model. Annales de l’Institut Henri Poincaré D, Tome 4 (2017) no. 4, pp. 453-477. doi : 10.4171/aihpd/45. https://www.numdam.org/articles/10.4171/aihpd/45/
- Irreversible Markov dynamics and hydrodynamics for KPZ states in the stochastic six vertex model, Electronic Journal of Probability, Volume 28 (2023) no. none | DOI:10.1214/23-ejp1005
- Hydrodynamic limit for a 2D interlaced particle process, The Annals of Applied Probability, Volume 32 (2022) no. 1 | DOI:10.1214/21-aap1674
- Irreversible Markov Dynamics and Hydrodynamics for KPZ States in the Stochastic Six Vertex Model, arXiv (2022) | DOI:10.48550/arxiv.2201.12497 | arXiv:2201.12497
- Determinantal Structures in Space-Inhomogeneous Dynamics on Interlacing Arrays, Annales Henri Poincaré, Volume 21 (2020) no. 3, p. 909 | DOI:10.1007/s00023-019-00881-5
- Speed and fluctuations for some driven dimer models, Annales de l’Institut Henri Poincaré D, Volume 6 (2019) no. 4, pp. 489-532 | DOI:10.4171/aihpd/77
- A (2 + 1)-Dimensional Anisotropic KPZ Growth Model with a Smooth Phase, Communications in Mathematical Physics, Volume 367 (2019) no. 2, p. 483 | DOI:10.1007/s00220-019-03402-x
- Hydrodynamic Limit and Viscosity Solutions for a Two‐Dimensional Growth Process in the Anisotropic KPZ Class, Communications on Pure and Applied Mathematics, Volume 72 (2019) no. 3, p. 620 | DOI:10.1002/cpa.21796
- Lozenge Tiling Dynamics and Convergence to the Hydrodynamic Equation, Communications in Mathematical Physics, Volume 358 (2018) no. 3, p. 1117 | DOI:10.1007/s00220-018-3095-y
- Hydrodynamic Limit Equation for a Lozenge Tiling Glauber Dynamics, Annales Henri Poincaré, Volume 18 (2017) no. 6, pp. 2007-2043 | DOI:10.1007/s00023-016-0548-8
- (2+1)-dimensional interface dynamics: mixing time, hydrodynamic limit and Anisotropic KPZ growth, arXiv (2017) | DOI:10.48550/arxiv.1711.05571 | arXiv:1711.05571
- Hydrodynamic limit and viscosity solutions for a 2D growth process in the anisotropic KPZ class, arXiv (2017) | DOI:10.48550/arxiv.1704.06581 | arXiv:1704.06581
- A (2+1)-dimensional growth process with explicit stationary measures, arXiv (2015) | DOI:10.48550/arxiv.1503.05339 | arXiv:1503.05339
Cité par 12 documents. Sources : Crossref, NASA ADS