We introduce a general model of dimer coverings of certain plane bipartite graphs, which we call rail yard graphs (RYG). The transfer matrices used to compute the partition function are shown to be isomorphic to certain operators arising in the so-called boson–fermion correspondence. This allows to reformulate the RYG dimer model as a Schur process, i.e. as a random sequence of integer partitions subject to some interlacing conditions.
Beyond the computation of the partition function, we provide an explicit expression for all correlation functions or, equivalently, for the inverse Kasteleyn matrix of the RYG dimer model. This expression, which is amenable to asymptotic analysis, follows from an exact combinatorial description of the operators localizing dimers in the transfer-matrix formalism, and then a suitable application of Wick’s theorem.
Plane partitions, domino tilings of the Aztec diamond, pyramid partitions, and steep tilings arise as particular cases of the RYG dimermodel. For the Aztec diamond, we provide new derivations of the edge-probability generating function, of the biased creation rate, of the inverse Kasteleyn matrix and of the arctic circle theorem.
Publié le :
DOI : 10.4171/aihpd/46
Mots-clés : Schur process, dimer models, Aztec diamond, plane partitions, determinantal processes, free fermions, vertex operators
@article{AIHPD_2017__4_4_479_0, author = {Boutillier, C\'edric and Bouttier, J\'er\'emie and Chapuy, Guillaume and Corteel, Sylvie and Ramassamy, Sanjay}, title = {Dimers on rail yard graphs}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {479--539}, volume = {4}, number = {4}, year = {2017}, doi = {10.4171/aihpd/46}, zbl = {1391.82008}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/aihpd/46/} }
TY - JOUR AU - Boutillier, Cédric AU - Bouttier, Jérémie AU - Chapuy, Guillaume AU - Corteel, Sylvie AU - Ramassamy, Sanjay TI - Dimers on rail yard graphs JO - Annales de l’Institut Henri Poincaré D PY - 2017 SP - 479 EP - 539 VL - 4 IS - 4 UR - http://archive.numdam.org/articles/10.4171/aihpd/46/ DO - 10.4171/aihpd/46 LA - en ID - AIHPD_2017__4_4_479_0 ER -
%0 Journal Article %A Boutillier, Cédric %A Bouttier, Jérémie %A Chapuy, Guillaume %A Corteel, Sylvie %A Ramassamy, Sanjay %T Dimers on rail yard graphs %J Annales de l’Institut Henri Poincaré D %D 2017 %P 479-539 %V 4 %N 4 %U http://archive.numdam.org/articles/10.4171/aihpd/46/ %R 10.4171/aihpd/46 %G en %F AIHPD_2017__4_4_479_0
Boutillier, Cédric; Bouttier, Jérémie; Chapuy, Guillaume; Corteel, Sylvie; Ramassamy, Sanjay. Dimers on rail yard graphs. Annales de l’Institut Henri Poincaré D, Tome 4 (2017) no. 4, pp. 479-539. doi : 10.4171/aihpd/46. http://archive.numdam.org/articles/10.4171/aihpd/46/
Cité par Sources :