A symmetry breaking transition in the edge/triangle network model
Annales de l’Institut Henri Poincaré D, Tome 5 (2018) no. 2, pp. 251-286.

Our general subject is the emergence of phases, and phase transitions, in large networks subjected to a few variable constraints. Our main result is the analysis, in the model using edge and triangle subdensities for constraints, of a sharp transition between two phases with different symmetries, analogous to the transition between a fluid and a crystalline solid.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/54
Classification : 05-XX, 82-XX
Mots-clés : Graph limits, entropy, bipodal structure, phase transitions, symmetry breaking
@article{AIHPD_2018__5_2_251_0,
     author = {Radin, Charles and Ren, Kui and Sadun, Lorenzo},
     title = {A symmetry breaking transition in the edge/triangle network model},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {251--286},
     volume = {5},
     number = {2},
     year = {2018},
     doi = {10.4171/aihpd/54},
     mrnumber = {3813216},
     zbl = {1390.05218},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpd/54/}
}
TY  - JOUR
AU  - Radin, Charles
AU  - Ren, Kui
AU  - Sadun, Lorenzo
TI  - A symmetry breaking transition in the edge/triangle network model
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2018
SP  - 251
EP  - 286
VL  - 5
IS  - 2
UR  - https://www.numdam.org/articles/10.4171/aihpd/54/
DO  - 10.4171/aihpd/54
LA  - en
ID  - AIHPD_2018__5_2_251_0
ER  - 
%0 Journal Article
%A Radin, Charles
%A Ren, Kui
%A Sadun, Lorenzo
%T A symmetry breaking transition in the edge/triangle network model
%J Annales de l’Institut Henri Poincaré D
%D 2018
%P 251-286
%V 5
%N 2
%U https://www.numdam.org/articles/10.4171/aihpd/54/
%R 10.4171/aihpd/54
%G en
%F AIHPD_2018__5_2_251_0
Radin, Charles; Ren, Kui; Sadun, Lorenzo. A symmetry breaking transition in the edge/triangle network model. Annales de l’Institut Henri Poincaré D, Tome 5 (2018) no. 2, pp. 251-286. doi : 10.4171/aihpd/54. https://www.numdam.org/articles/10.4171/aihpd/54/
  • Cook, Nicholas A.; Dembo, Amir; Pham, Huy Tuan Regularity method and large deviation principles for the Erdős–Rényi hypergraph, Duke Mathematical Journal, Volume 173 (2024) no. 5 | DOI:10.1215/00127094-2023-0029
  • Neeman, Joe; Radin, Charles; Sadun, Lorenzo Moderate deviations in cycle count, Random Structures Algorithms, Volume 63 (2023) no. 3, p. 779 | DOI:10.1002/rsa.21147
  • Mukherjee, Somabha; Bhattacharya, Bhaswar B. Replica symmetry in upper tails of mean-field hypergraphs, Advances in Applied Mathematics, Volume 119 (2020), p. 102047 | DOI:10.1016/j.aam.2020.102047
  • Neeman, Joe; Radin, Charles; Sadun, Lorenzo Phase Transitions in Finite Random Networks, Journal of Statistical Physics, Volume 181 (2020) no. 1, p. 305 | DOI:10.1007/s10955-020-02582-4
  • Kenyon, Richard; Radin, Charles; Ren, Kui; Sadun, Lorenzo The phases of large networks with edge and triangle constraints, Journal of Physics A: Mathematical and Theoretical, Volume 50 (2017) no. 43 | DOI:10.1088/1751-8121/aa8ce1
  • Radin, Charles; Ren, Kui; Sadun, Lorenzo Surface effects in dense random graphs with sharp edge constraint, arXiv (2017) | DOI:10.48550/arxiv.1709.01036 | arXiv:1709.01036
  • Radin, Charles Wulff shape for equilibrium phases, arXiv (2016) | DOI:10.48550/arxiv.1610.08564 | arXiv:1610.08564

Cité par 7 documents. Sources : Crossref, NASA ADS