Our general subject is the emergence of phases, and phase transitions, in large networks subjected to a few variable constraints. Our main result is the analysis, in the model using edge and triangle subdensities for constraints, of a sharp transition between two phases with different symmetries, analogous to the transition between a fluid and a crystalline solid.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/54
Publié le :
DOI : 10.4171/aihpd/54
Classification :
05-XX, 82-XX
Mots-clés : Graph limits, entropy, bipodal structure, phase transitions, symmetry breaking
Mots-clés : Graph limits, entropy, bipodal structure, phase transitions, symmetry breaking
@article{AIHPD_2018__5_2_251_0, author = {Radin, Charles and Ren, Kui and Sadun, Lorenzo}, title = {A symmetry breaking transition in the edge/triangle network model}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {251--286}, volume = {5}, number = {2}, year = {2018}, doi = {10.4171/aihpd/54}, mrnumber = {3813216}, zbl = {1390.05218}, language = {en}, url = {https://www.numdam.org/articles/10.4171/aihpd/54/} }
TY - JOUR AU - Radin, Charles AU - Ren, Kui AU - Sadun, Lorenzo TI - A symmetry breaking transition in the edge/triangle network model JO - Annales de l’Institut Henri Poincaré D PY - 2018 SP - 251 EP - 286 VL - 5 IS - 2 UR - https://www.numdam.org/articles/10.4171/aihpd/54/ DO - 10.4171/aihpd/54 LA - en ID - AIHPD_2018__5_2_251_0 ER -
%0 Journal Article %A Radin, Charles %A Ren, Kui %A Sadun, Lorenzo %T A symmetry breaking transition in the edge/triangle network model %J Annales de l’Institut Henri Poincaré D %D 2018 %P 251-286 %V 5 %N 2 %U https://www.numdam.org/articles/10.4171/aihpd/54/ %R 10.4171/aihpd/54 %G en %F AIHPD_2018__5_2_251_0
Radin, Charles; Ren, Kui; Sadun, Lorenzo. A symmetry breaking transition in the edge/triangle network model. Annales de l’Institut Henri Poincaré D, Tome 5 (2018) no. 2, pp. 251-286. doi : 10.4171/aihpd/54. https://www.numdam.org/articles/10.4171/aihpd/54/
- Regularity method and large deviation principles for the Erdős–Rényi hypergraph, Duke Mathematical Journal, Volume 173 (2024) no. 5 | DOI:10.1215/00127094-2023-0029
- Moderate deviations in cycle count, Random Structures Algorithms, Volume 63 (2023) no. 3, p. 779 | DOI:10.1002/rsa.21147
- Replica symmetry in upper tails of mean-field hypergraphs, Advances in Applied Mathematics, Volume 119 (2020), p. 102047 | DOI:10.1016/j.aam.2020.102047
- Phase Transitions in Finite Random Networks, Journal of Statistical Physics, Volume 181 (2020) no. 1, p. 305 | DOI:10.1007/s10955-020-02582-4
- The phases of large networks with edge and triangle constraints, Journal of Physics A: Mathematical and Theoretical, Volume 50 (2017) no. 43 | DOI:10.1088/1751-8121/aa8ce1
- Surface effects in dense random graphs with sharp edge constraint, arXiv (2017) | DOI:10.48550/arxiv.1709.01036 | arXiv:1709.01036
- Wulff shape for equilibrium phases, arXiv (2016) | DOI:10.48550/arxiv.1610.08564 | arXiv:1610.08564
Cité par 7 documents. Sources : Crossref, NASA ADS