Rigged configurations are known to provide action-angle variables for remarkable discrete dynamical systems known as box-ball systems. We conjecture an explicit piecewise-linear formula to obtain the shapes of a rigged configuration from a tensor product of one-row crystals. We introduce cylindric loop Schur functions and show that they are invariants of the geometric
Accepté le :
Publié le :
DOI : 10.4171/aihpd/61
Publié le :
DOI : 10.4171/aihpd/61
Classification :
05-XX, 37-XX, 70-XX
Mots-clés : Rigged configuration, discrete soliton, box ball system, tropicalization, loop schur functions
Mots-clés : Rigged configuration, discrete soliton, box ball system, tropicalization, loop schur functions
@article{AIHPD_2018__5_4_513_0, author = {Lam, Thomas and Pylyavskyy, Pavlo and Sakamoto, Reiho}, title = {Rigged configurations and cylindric loop {Schur} functions}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {513--555}, volume = {5}, number = {4}, year = {2018}, doi = {10.4171/aihpd/61}, mrnumber = {3900290}, zbl = {1400.05267}, language = {en}, url = {https://www.numdam.org/articles/10.4171/aihpd/61/} }
TY - JOUR AU - Lam, Thomas AU - Pylyavskyy, Pavlo AU - Sakamoto, Reiho TI - Rigged configurations and cylindric loop Schur functions JO - Annales de l’Institut Henri Poincaré D PY - 2018 SP - 513 EP - 555 VL - 5 IS - 4 UR - https://www.numdam.org/articles/10.4171/aihpd/61/ DO - 10.4171/aihpd/61 LA - en ID - AIHPD_2018__5_4_513_0 ER -
%0 Journal Article %A Lam, Thomas %A Pylyavskyy, Pavlo %A Sakamoto, Reiho %T Rigged configurations and cylindric loop Schur functions %J Annales de l’Institut Henri Poincaré D %D 2018 %P 513-555 %V 5 %N 4 %U https://www.numdam.org/articles/10.4171/aihpd/61/ %R 10.4171/aihpd/61 %G en %F AIHPD_2018__5_4_513_0
Lam, Thomas; Pylyavskyy, Pavlo; Sakamoto, Reiho. Rigged configurations and cylindric loop Schur functions. Annales de l’Institut Henri Poincaré D, Tome 5 (2018) no. 4, pp. 513-555. doi : 10.4171/aihpd/61. https://www.numdam.org/articles/10.4171/aihpd/61/
- Multivariate correlation inequalities for P-partitions, Pacific Journal of Mathematics, Volume 323 (2023) no. 2, p. 223 | DOI:10.2140/pjm.2023.323.223
- The geometric R-matrix for affine crystals of type A, Advances in Mathematics, Volume 392 (2021), p. 108000 | DOI:10.1016/j.aim.2021.108000
- Uniform description of the rigged configuration bijection, Selecta Mathematica, Volume 26 (2020) no. 3 | DOI:10.1007/s00029-020-00564-8
Cité par 3 documents. Sources : Crossref