On dimer models and coamoebas
Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 2, pp. 199-219.

We describe the relationship between dimer models on the real two-torus and coamoebas of curves in (×)2. We show, inter alia, that the dimer model obtained from the shell of the coamoeba is a deformation retract of the closed coamoeba if and only if the number of connected components of the complement of the closed coamoeba is maximal. Furthermore, we show that in general the closed coamoeba of the characteristic polynomial of a dimer model does not have the maximal number of components of its complement

Accepté le :
Publié le :
DOI : 10.4171/aihpd/69
Classification : 82-XX, 14-XX, 52-XX
Mots-clés : Dimer model, amoeba, coamoeba, torus arrangements
@article{AIHPD_2019__6_2_199_0,
     author = {Forsg\r{a}rd, Jens},
     title = {On dimer models and coamoebas},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {199--219},
     volume = {6},
     number = {2},
     year = {2019},
     doi = {10.4171/aihpd/69},
     mrnumber = {3950653},
     zbl = {1417.82009},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpd/69/}
}
TY  - JOUR
AU  - Forsgård, Jens
TI  - On dimer models and coamoebas
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2019
SP  - 199
EP  - 219
VL  - 6
IS  - 2
UR  - https://www.numdam.org/articles/10.4171/aihpd/69/
DO  - 10.4171/aihpd/69
LA  - en
ID  - AIHPD_2019__6_2_199_0
ER  - 
%0 Journal Article
%A Forsgård, Jens
%T On dimer models and coamoebas
%J Annales de l’Institut Henri Poincaré D
%D 2019
%P 199-219
%V 6
%N 2
%U https://www.numdam.org/articles/10.4171/aihpd/69/
%R 10.4171/aihpd/69
%G en
%F AIHPD_2019__6_2_199_0
Forsgård, Jens. On dimer models and coamoebas. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 2, pp. 199-219. doi : 10.4171/aihpd/69. https://www.numdam.org/articles/10.4171/aihpd/69/
  • Krasikov, Vitaly A. A Survey on Computational Aspects of Polynomial Amoebas, Mathematics in Computer Science, Volume 17 (2023) no. 3-4 | DOI:10.1007/s11786-023-00570-x
  • Casals, Roger; Vianna, Renato Full ellipsoid embeddings and toric mutations, Selecta Mathematica, Volume 28 (2022) no. 3 | DOI:10.1007/s00029-022-00765-3
  • Hicks, Jeffrey Tropical Lagrangians in toric del-Pezzo surfaces, Selecta Mathematica, Volume 27 (2021) no. 1 | DOI:10.1007/s00029-020-00614-1
  • de la Cruz, Leonardo Feynman integrals as A-hypergeometric functions, Journal of High Energy Physics, Volume 2019 (2019) no. 12 | DOI:10.1007/jhep12(2019)123

Cité par 4 documents. Sources : Crossref