This paper contributes to a programme initiated by the first author: "How much information about a graph is revealed in its Potts partition function?“ We show that the
Accepté le :
Publié le :
DOI : 10.4171/aihpd/74
Publié le :
DOI : 10.4171/aihpd/74
Classification :
05-XX
Mots-clés : -polynomial, tree, graph reconstruction, graph isomorphism, -polynomial, Stanley’s isomorphism conjecture, Potts partition function
Mots-clés :
@article{AIHPD_2019__6_3_357_0, author = {Loebl, Martin and Sereni, Jean-S\'ebastien}, title = {Isomorphism of weighted trees and {Stanley's} isomorphism conjecture for caterpillars}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {357--384}, volume = {6}, number = {3}, year = {2019}, doi = {10.4171/aihpd/74}, mrnumber = {4002670}, zbl = {1422.05054}, language = {en}, url = {https://www.numdam.org/articles/10.4171/aihpd/74/} }
TY - JOUR AU - Loebl, Martin AU - Sereni, Jean-Sébastien TI - Isomorphism of weighted trees and Stanley's isomorphism conjecture for caterpillars JO - Annales de l’Institut Henri Poincaré D PY - 2019 SP - 357 EP - 384 VL - 6 IS - 3 UR - https://www.numdam.org/articles/10.4171/aihpd/74/ DO - 10.4171/aihpd/74 LA - en ID - AIHPD_2019__6_3_357_0 ER -
%0 Journal Article %A Loebl, Martin %A Sereni, Jean-Sébastien %T Isomorphism of weighted trees and Stanley's isomorphism conjecture for caterpillars %J Annales de l’Institut Henri Poincaré D %D 2019 %P 357-384 %V 6 %N 3 %U https://www.numdam.org/articles/10.4171/aihpd/74/ %R 10.4171/aihpd/74 %G en %F AIHPD_2019__6_3_357_0
Loebl, Martin; Sereni, Jean-Sébastien. Isomorphism of weighted trees and Stanley's isomorphism conjecture for caterpillars. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 3, pp. 357-384. doi : 10.4171/aihpd/74. https://www.numdam.org/articles/10.4171/aihpd/74/
- Distinguishing and Reconstructing Directed Graphs by their
-Polynomials, Annals of Combinatorics (2024) | DOI:10.1007/s00026-024-00702-5 - Chromatic symmetric functions and polynomial invariants of trees, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 11, p. 3452 | DOI:10.1112/blms.13144
- A rooted variant of Stanley's chromatic symmetric function, Discrete Mathematics, Volume 347 (2024) no. 3, p. 113805 | DOI:10.1016/j.disc.2023.113805
- A class of trees determined by their chromatic symmetric functions, Discrete Mathematics, Volume 347 (2024) no. 9, p. 114096 | DOI:10.1016/j.disc.2024.114096
- Deletion-contraction for a unified Laplacian and applications, Linear Algebra and its Applications, Volume 691 (2024), p. 50 | DOI:10.1016/j.laa.2024.03.013
- Quasisymmetric functions distinguishing trees, Algebraic Combinatorics, Volume 6 (2023) no. 3, p. 595 | DOI:10.5802/alco.273
- Marked Graphs and the Chromatic Symmetric Function, SIAM Journal on Discrete Mathematics, Volume 37 (2023) no. 3, p. 1881 | DOI:10.1137/22m148046x
- A note on distinguishing trees with the chromatic symmetric function, Discrete Mathematics, Volume 345 (2022) no. 2, p. 112682 | DOI:10.1016/j.disc.2021.112682
- On the e-positivity of trees and spiders, Journal of Combinatorial Theory, Series A, Volume 189 (2022), p. 105608 | DOI:10.1016/j.jcta.2022.105608
- Extended chromatic symmetric functions and equality of ribbon Schur functions, Advances in Applied Mathematics, Volume 128 (2021), p. 102189 | DOI:10.1016/j.aam.2021.102189
- On the smallest trees with the same restricted U-polynomial and the rooted U-polynomial, Discrete Mathematics, Volume 344 (2021) no. 3, p. 112255 | DOI:10.1016/j.disc.2020.112255
- A few more trees the chromatic symmetric function can distinguish, Involve, a Journal of Mathematics, Volume 13 (2020) no. 1, p. 109 | DOI:10.2140/involve.2020.13.109
- Tutte polynomials for directed graphs, Journal of Combinatorial Theory, Series B, Volume 140 (2020), p. 192 | DOI:10.1016/j.jctb.2019.05.006
Cité par 13 documents. Sources : Crossref