Isomorphism of weighted trees and Stanley's isomorphism conjecture for caterpillars
Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 3, pp. 357-384.

This paper contributes to a programme initiated by the first author: "How much information about a graph is revealed in its Potts partition function?“ We show that the W-polynomial distinguishes non-isomorphic weighted trees of a good family. The framework developed to do so also allows us to show that the W-polynomial distinguishes non-isomorphic caterpillars. This establishes Stanley's conjecture for caterpillars, an extensively studied problem.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/74
Classification : 05-XX
Mots-clés : W-polynomial, tree, graph reconstruction, graph isomorphism, U-polynomial, Stanley’s isomorphism conjecture, Potts partition function
@article{AIHPD_2019__6_3_357_0,
     author = {Loebl, Martin and Sereni, Jean-S\'ebastien},
     title = {Isomorphism of weighted trees and {Stanley's} isomorphism conjecture for caterpillars},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {357--384},
     volume = {6},
     number = {3},
     year = {2019},
     doi = {10.4171/aihpd/74},
     mrnumber = {4002670},
     zbl = {1422.05054},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpd/74/}
}
TY  - JOUR
AU  - Loebl, Martin
AU  - Sereni, Jean-Sébastien
TI  - Isomorphism of weighted trees and Stanley's isomorphism conjecture for caterpillars
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2019
SP  - 357
EP  - 384
VL  - 6
IS  - 3
UR  - https://www.numdam.org/articles/10.4171/aihpd/74/
DO  - 10.4171/aihpd/74
LA  - en
ID  - AIHPD_2019__6_3_357_0
ER  - 
%0 Journal Article
%A Loebl, Martin
%A Sereni, Jean-Sébastien
%T Isomorphism of weighted trees and Stanley's isomorphism conjecture for caterpillars
%J Annales de l’Institut Henri Poincaré D
%D 2019
%P 357-384
%V 6
%N 3
%U https://www.numdam.org/articles/10.4171/aihpd/74/
%R 10.4171/aihpd/74
%G en
%F AIHPD_2019__6_3_357_0
Loebl, Martin; Sereni, Jean-Sébastien. Isomorphism of weighted trees and Stanley's isomorphism conjecture for caterpillars. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 3, pp. 357-384. doi : 10.4171/aihpd/74. https://www.numdam.org/articles/10.4171/aihpd/74/
  • Sawant, Sagar S. Distinguishing and Reconstructing Directed Graphs by their BB-Polynomials, Annals of Combinatorics (2024) | DOI:10.1007/s00026-024-00702-5
  • Aliste‐Prieto, José; Martin, Jeremy L.; Wagner, Jennifer D.; Zamora, José Chromatic symmetric functions and polynomial invariants of trees, Bulletin of the London Mathematical Society, Volume 56 (2024) no. 11, p. 3452 | DOI:10.1112/blms.13144
  • Loehr, Nicholas A.; Warrington, Gregory S. A rooted variant of Stanley's chromatic symmetric function, Discrete Mathematics, Volume 347 (2024) no. 3, p. 113805 | DOI:10.1016/j.disc.2023.113805
  • Wang, Yuzhenni; Yu, Xingxing; Zhang, Xiao-Dong A class of trees determined by their chromatic symmetric functions, Discrete Mathematics, Volume 347 (2024) no. 9, p. 114096 | DOI:10.1016/j.disc.2024.114096
  • Aliniaeifard, Farid; Wang, Victor; van Willigenburg, Stephanie Deletion-contraction for a unified Laplacian and applications, Linear Algebra and its Applications, Volume 691 (2024), p. 50 | DOI:10.1016/j.laa.2024.03.013
  • Aval, Jean-Christophe; Djenabou, Karimatou; McNamara, Peter R. W. Quasisymmetric functions distinguishing trees, Algebraic Combinatorics, Volume 6 (2023) no. 3, p. 595 | DOI:10.5802/alco.273
  • Aliste-Prieto, José; de Mier, Anna; Orellana, Rosa; Zamora, José Marked Graphs and the Chromatic Symmetric Function, SIAM Journal on Discrete Mathematics, Volume 37 (2023) no. 3, p. 1881 | DOI:10.1137/22m148046x
  • Crew, Logan A note on distinguishing trees with the chromatic symmetric function, Discrete Mathematics, Volume 345 (2022) no. 2, p. 112682 | DOI:10.1016/j.disc.2021.112682
  • Zheng, Kai On the e-positivity of trees and spiders, Journal of Combinatorial Theory, Series A, Volume 189 (2022), p. 105608 | DOI:10.1016/j.jcta.2022.105608
  • Aliniaeifard, Farid; Wang, Victor; van Willigenburg, Stephanie Extended chromatic symmetric functions and equality of ribbon Schur functions, Advances in Applied Mathematics, Volume 128 (2021), p. 102189 | DOI:10.1016/j.aam.2021.102189
  • Aliste-Prieto, José; de Mier, Anna; Zamora, José On the smallest trees with the same restricted U-polynomial and the rooted U-polynomial, Discrete Mathematics, Volume 344 (2021) no. 3, p. 112255 | DOI:10.1016/j.disc.2020.112255
  • Huryn, Jake; Chmutov, Sergei A few more trees the chromatic symmetric function can distinguish, Involve, a Journal of Mathematics, Volume 13 (2020) no. 1, p. 109 | DOI:10.2140/involve.2020.13.109
  • Awan, Jordan; Bernardi, Olivier Tutte polynomials for directed graphs, Journal of Combinatorial Theory, Series B, Volume 140 (2020), p. 192 | DOI:10.1016/j.jctb.2019.05.006

Cité par 13 documents. Sources : Crossref