Decompositions of amplituhedra
Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 3, pp. 303-363.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The (tree) amplituhedron 𝒜n,k,m is the image in the Grassmannian Grk,k+m of the totally nonnegative Grassmannian Grk,n0, under a (map induced by a) linear map which is totally positive. It was introduced by Arkani-Hamed and Trnka in 2013 in order to give a geometric basis for the computation of scattering amplitudes in planar 𝒩=4 supersymmetric Yang–Mills theory. In the case relevant to physics (m=4), there is a collection of recursively-defined 4k-dimensional BCFW cells in Grk,n0, whose images conjecturally "triangulate" the amplituhedron – that is, their images are disjoint and cover a dense subset of 𝒜n,k,4. In this paper, we approach this problem by first giving an explicit (as opposed to recursive) description of the BCFW cells. We then develop sign-variational tools which we use to prove that when k=2, the images of these cells are disjoint in 𝒜n,k,4. We also conjecture that for arbitrary even m, there is a decomposition of the amplituhedron 𝒜n,k,m involving precisely Mk,n-k-m,m2 top-dimensional cells (of dimension km), where M(a,b,c) is the number of plane partitions contained in an a×b×c box. This agrees with the fact that when m=4, the number of BCFW cells is the Narayana number Nn-3,k+1=1n-3n-3k+1n-3k.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/87
Classification : 05-XX, 14-XX, 15-XX, 81-XX
Mots-clés : Amplituhedron, scattering amplitude, totally nonnegative Grassmannian, BCFW recursion, Narayana number, plane partition
@article{AIHPD_2020__7_3_303_0,
     author = {Karp, Steven N. and Williams, Lauren K. and Zhang, Yan X},
     title = {Decompositions of amplituhedra},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {303--363},
     volume = {7},
     number = {3},
     year = {2020},
     doi = {10.4171/aihpd/87},
     mrnumber = {4152617},
     zbl = {1470.81048},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpd/87/}
}
TY  - JOUR
AU  - Karp, Steven N.
AU  - Williams, Lauren K.
AU  - Zhang, Yan X
TI  - Decompositions of amplituhedra
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2020
SP  - 303
EP  - 363
VL  - 7
IS  - 3
UR  - https://www.numdam.org/articles/10.4171/aihpd/87/
DO  - 10.4171/aihpd/87
LA  - en
ID  - AIHPD_2020__7_3_303_0
ER  - 
%0 Journal Article
%A Karp, Steven N.
%A Williams, Lauren K.
%A Zhang, Yan X
%T Decompositions of amplituhedra
%J Annales de l’Institut Henri Poincaré D
%D 2020
%P 303-363
%V 7
%N 3
%U https://www.numdam.org/articles/10.4171/aihpd/87/
%R 10.4171/aihpd/87
%G en
%F AIHPD_2020__7_3_303_0
Karp, Steven N.; Williams, Lauren K.; Zhang, Yan X. Decompositions of amplituhedra. Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 3, pp. 303-363. doi : 10.4171/aihpd/87. https://www.numdam.org/articles/10.4171/aihpd/87/
  • Alon, Lior; Kummer, Mario; Kurasov, Pavel; Vinzant, Cynthia Higher dimensional Fourier quasicrystals from Lee–Yang varieties, Inventiones mathematicae, Volume 239 (2025) no. 1, p. 321 | DOI:10.1007/s00222-024-01307-8
  • Even-Zohar, Chaim; Lakrec, Tsviqa; Tessler, Ran J. The amplituhedron BCFW triangulation, Inventiones mathematicae, Volume 239 (2025) no. 3, p. 1009 | DOI:10.1007/s00222-025-01316-1
  • Brown, Taro V.; Oktem, Umut; Paranjape, Shruti; Trnka, Jaroslav Loops of loops expansion in the amplituhedron, Journal of High Energy Physics, Volume 2024 (2024) no. 7 | DOI:10.1007/jhep07(2024)025
  • Arkani-Hamed, Nima; Flieger, Wojciech; Henn, Johannes M.; Schreiber, Anders; Trnka, Jaroslav Coulomb Branch Amplitudes from a Deformed Amplituhedron Geometry, Physical Review Letters, Volume 132 (2024) no. 21 | DOI:10.1103/physrevlett.132.211601
  • Agarwala, Susama; Marcott, Cameron Cancellation of spurious poles in N=4 SYM: Physical and geometric, Advances in Applied Mathematics, Volume 149 (2023), p. 102537 | DOI:10.1016/j.aam.2023.102537
  • Parisi, Matteo; Sherman-Bennett, Melissa; Williams, Lauren The 𝑚=2 amplituhedron and the hypersimplex: Signs, clusters, tilings, Eulerian numbers, Communications of the American Mathematical Society, Volume 3 (2023) no. 7, p. 329 | DOI:10.1090/cams/23
  • Łukowski, Tomasz; Parisi, Matteo; Williams, Lauren K The Positive Tropical Grassmannian, the Hypersimplex, and them= 2 Amplituhedron, International Mathematics Research Notices, Volume 2023 (2023) no. 19, p. 16778 | DOI:10.1093/imrn/rnad010
  • Blot, Xavier; Li, Jian-Rong The amplituhedron crossing and winding numbers, Journal of Geometry and Physics, Volume 193 (2023), p. 104961 | DOI:10.1016/j.geomphys.2023.104961
  • He, Song; Huang, Yu-tin; Kuo, Chia-Kai The ABJM Amplituhedron, Journal of High Energy Physics, Volume 2023 (2023) no. 9 | DOI:10.1007/jhep09(2023)165
  • Łukowski, Tomasz; Stalknecht, Jonah Momentum Amplituhedron for N=6 Chern-Simons-Matter Theory: Scattering Amplitudes from Configurations of Points in Minkowski Space, Physical Review Letters, Volume 131 (2023) no. 16 | DOI:10.1103/physrevlett.131.161601
  • Agarwala, Susama; Fryer, Siân; Yeats, Karen Combinatorics of the geometry of Wilson loop diagrams II: Grassmann necklaces, dimensions, and denominators, Canadian Journal of Mathematics, Volume 74 (2022) no. 6, p. 1625 | DOI:10.4153/s0008414x21000377
  • Rincón, Felipe; Vinzant, Cynthia; Yu, Josephine Positively hyperbolic varieties, tropicalization, and positroids, Advances in Mathematics, Volume 383 (2021), p. 107677 | DOI:10.1016/j.aim.2021.107677

Cité par 12 documents. Sources : Crossref