Conformal blocks, q-combinatorics, and quantum group symmetry
Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 3, pp. 449-487.

In this article, we find a q-analogue for Fomin’s formulas. The original Fomin’s formulas relate determinants of random walk excursion kernels to loop-erased random walk partition functions, and our formulas analogously relate conformal block functions of conformal field theories to pure partition functions of multiple SLE random curves. We also provide a construction of the conformal block functions by a method based on a quantum group, the q-deformation of 𝔰𝔩2. The construction both highlights the representation theoretic origin of conformal block functions and explains the appearance of q-combinatorial formulas.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/88
Classification : 81-XX, 05-XX, 16-XX, 60-XX
Mots-clés : Conformal blocks, conformal field theory (CFT), Dyck tilings, multiple SLEs, quantum group representations, q-combinatorics
@article{AIHPD_2019__6_3_449_0,
     author = {Karrila, Alex and Kyt\"ol\"a, Kalle and Peltola, Eveliina},
     title = {Conformal blocks, $q$-combinatorics, and quantum group symmetry},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {449--487},
     volume = {6},
     number = {3},
     year = {2019},
     doi = {10.4171/aihpd/88},
     mrnumber = {4002673},
     zbl = {1432.81054},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/aihpd/88/}
}
TY  - JOUR
AU  - Karrila, Alex
AU  - Kytölä, Kalle
AU  - Peltola, Eveliina
TI  - Conformal blocks, $q$-combinatorics, and quantum group symmetry
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2019
SP  - 449
EP  - 487
VL  - 6
IS  - 3
UR  - https://www.numdam.org/articles/10.4171/aihpd/88/
DO  - 10.4171/aihpd/88
LA  - en
ID  - AIHPD_2019__6_3_449_0
ER  - 
%0 Journal Article
%A Karrila, Alex
%A Kytölä, Kalle
%A Peltola, Eveliina
%T Conformal blocks, $q$-combinatorics, and quantum group symmetry
%J Annales de l’Institut Henri Poincaré D
%D 2019
%P 449-487
%V 6
%N 3
%U https://www.numdam.org/articles/10.4171/aihpd/88/
%R 10.4171/aihpd/88
%G en
%F AIHPD_2019__6_3_449_0
Karrila, Alex; Kytölä, Kalle; Peltola, Eveliina. Conformal blocks, $q$-combinatorics, and quantum group symmetry. Annales de l’Institut Henri Poincaré D, Tome 6 (2019) no. 3, pp. 449-487. doi : 10.4171/aihpd/88. https://www.numdam.org/articles/10.4171/aihpd/88/
  • Peltola, Eveliina; Wang, Yilin Large deviations of multichordal SLE0+, real rational functions, and zeta-regularized determinants of Laplacians, Journal of the European Mathematical Society (JEMS), Volume 26 (2024) no. 2, pp. 469-535 | DOI:10.4171/jems/1274 | Zbl:1535.30049
  • Koshida, Shinji; Kytölä, Kalle The quantum group dual of the first-row subcategory for the generic Virasoro VOA, Communications in Mathematical Physics, Volume 389 (2022) no. 2, pp. 1135-1213 | DOI:10.1007/s00220-021-04266-w | Zbl:1511.17039
  • Izyurov, Konstantin On multiple SLE for the FK-Ising model, The Annals of Probability, Volume 50 (2022) no. 2, pp. 771-790 | DOI:10.1214/21-aop1547 | Zbl:1486.60106
  • Liu, Mingchang; Wu, Hao Scaling limits of crossing probabilities in metric graph GFF, Electronic Journal of Probability, Volume 26 (2021), p. 46 (Id/No 37) | DOI:10.1214/21-ejp598 | Zbl:1479.60076
  • Karrila, Alex; Kytölä, Kalle; Peltola, Eveliina Boundary correlations in planar LERW and UST, Communications in Mathematical Physics, Volume 376 (2020) no. 3, pp. 2065-2145 | DOI:10.1007/s00220-019-03615-0 | Zbl:1441.82023
  • Karrila, Alex UST branches, martingales, and multiple SLE(2), Electronic Journal of Probability, Volume 25 (2020), p. 37 (Id/No 83) | DOI:10.1214/20-ejp485 | Zbl:1459.60175
  • Peltola, Eveliina; Wu, Hao Global and local multiple SLEs for κ4 and connection probabilities for level lines of GFF, Communications in Mathematical Physics, Volume 366 (2019) no. 2, pp. 469-536 | DOI:10.1007/s00220-019-03360-4 | Zbl:1422.60142

Cité par 7 documents. Sources : zbMATH