The perimeter cascade in critical Boltzmann quadrangulations decorated by an O(n) loop model
Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 4, pp. 535-584.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study the branching tree of the perimeters of the nested loops in the non-generic critical O(n) model on random quadrangulations. We prove that after renormalization it converges towards an explicit continuous multiplicative cascade whose offspring distribution (x i ) i1 is related to the jumps of a spectrally positive α-stable Lévy process with α=3 2±1 π arccos (n/2) and for which we have the surprisingly simple and explicit transform

𝔼 i 1 ( x i ) θ = sin ( π ( 2 - α ) ) sin ( π ( θ - α ) ) , f o r θ ( α , α + 1 ) .

An important ingredient in the proof is a new formula of independent interest on first moments of additive functionals of the jumps of a left-continuous random walk stopped at a hitting time. We also identify the scaling limit of the volume of the critical O(n)-decorated quadrangulation using the Malthusian martingale associated to the continuous multiplicative cascade.

Accepté le :
Publié le :
DOI : 10.4171/aihpd/94
Classification : 60-XX, 05-XX
Mots-clés : $O(n)$ loop model, random planar map, multiplicative cascade, invariance principle, stable Lévy process
@article{AIHPD_2020__7_4_535_0,
     author = {Chen, Linxiao and Curien, Nicolas and Maillard, Pascal},
     title = {The perimeter cascade in critical {Boltzmann} quadrangulations decorated by an $O(n)$ loop model},
     journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D},
     pages = {535--584},
     volume = {7},
     number = {4},
     year = {2020},
     doi = {10.4171/aihpd/94},
     mrnumber = {4182775},
     zbl = {1454.05106},
     language = {en},
     url = {http://archive.numdam.org/articles/10.4171/aihpd/94/}
}
TY  - JOUR
AU  - Chen, Linxiao
AU  - Curien, Nicolas
AU  - Maillard, Pascal
TI  - The perimeter cascade in critical Boltzmann quadrangulations decorated by an $O(n)$ loop model
JO  - Annales de l’Institut Henri Poincaré D
PY  - 2020
SP  - 535
EP  - 584
VL  - 7
IS  - 4
UR  - http://archive.numdam.org/articles/10.4171/aihpd/94/
DO  - 10.4171/aihpd/94
LA  - en
ID  - AIHPD_2020__7_4_535_0
ER  - 
%0 Journal Article
%A Chen, Linxiao
%A Curien, Nicolas
%A Maillard, Pascal
%T The perimeter cascade in critical Boltzmann quadrangulations decorated by an $O(n)$ loop model
%J Annales de l’Institut Henri Poincaré D
%D 2020
%P 535-584
%V 7
%N 4
%U http://archive.numdam.org/articles/10.4171/aihpd/94/
%R 10.4171/aihpd/94
%G en
%F AIHPD_2020__7_4_535_0
Chen, Linxiao; Curien, Nicolas; Maillard, Pascal. The perimeter cascade in critical Boltzmann quadrangulations decorated by an $O(n)$ loop model. Annales de l’Institut Henri Poincaré D, Tome 7 (2020) no. 4, pp. 535-584. doi : 10.4171/aihpd/94. http://archive.numdam.org/articles/10.4171/aihpd/94/

Cité par Sources :