Finite groups with -embedded subgroups
Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 51-63.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
Let be a finite soluble group and let be a class of groups. A chief factor of is said to be -central (in ) if ; we write to denote the set of all subgroups of such that every chief factor of between and is -central in . Let be a set of subgroups of . We say that a subgroup of is -embedded in provided is a Hall subgroup of some subgroup . In this paper, we study the structure of under the condition that every subgroup of is -embedded in , where for some hereditary saturated formation . Some known results are generalized.
@article{RSMUP_2022__148__51_0, author = {Hu, Bin and Huang, Jianhong and Skiba, Alexander N.}, title = {Finite groups with $H_{\mathcal L}$-embedded subgroups}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {51--63}, volume = {148}, year = {2022}, doi = {10.4171/rsmup/102}, mrnumber = {4542372}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/rsmup/102/} }
TY - JOUR AU - Hu, Bin AU - Huang, Jianhong AU - Skiba, Alexander N. TI - Finite groups with $H_{\mathcal L}$-embedded subgroups JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2022 SP - 51 EP - 63 VL - 148 UR - http://archive.numdam.org/articles/10.4171/rsmup/102/ DO - 10.4171/rsmup/102 LA - en ID - RSMUP_2022__148__51_0 ER -
%0 Journal Article %A Hu, Bin %A Huang, Jianhong %A Skiba, Alexander N. %T Finite groups with $H_{\mathcal L}$-embedded subgroups %J Rendiconti del Seminario Matematico della Università di Padova %D 2022 %P 51-63 %V 148 %U http://archive.numdam.org/articles/10.4171/rsmup/102/ %R 10.4171/rsmup/102 %G en %F RSMUP_2022__148__51_0
Hu, Bin; Huang, Jianhong; Skiba, Alexander N. Finite groups with $H_{\mathcal L}$-embedded subgroups. Rendiconti del Seminario Matematico della Università di Padova, Tome 148 (2022), pp. 51-63. doi : 10.4171/rsmup/102. http://archive.numdam.org/articles/10.4171/rsmup/102/
Cité par Sources :