Note on algebraic irregular Riemann–Hilbert correspondence
Rendiconti del Seminario Matematico della Università di Padova, Tome 149 (2023), pp. 45-81.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
The subject of this paper is an algebraic version of the irregular Riemann–Hilbert correspondence which was mentioned in [Tsukuba J. Math. 44 (2020), 155–201]. In particular, we prove an equivalence of categories between the triangulated category of holonomic -modules on a smooth algebraic variety over and the triangulated category of algebraic -constructible enhanced ind-sheaves on a bordered space . Moreover, we show that there exists a t-structure on the triangulated category whose heart is equivalent to the abelian category of holonomic -modules on . Furthermore, we shall consider simple objects of its heart and minimal extensions of objects of its heart.
@article{RSMUP_2023__149__45_0, author = {Yohei Ito}, title = {Note on algebraic irregular {Riemann{\textendash}Hilbert} correspondence}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {45--81}, volume = {149}, year = {2023}, doi = {10.4171/rsmup/119}, mrnumber = {4575364}, zbl = {07688317}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/rsmup/119/} }
TY - JOUR AU - Yohei Ito TI - Note on algebraic irregular Riemann–Hilbert correspondence JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2023 SP - 45 EP - 81 VL - 149 UR - http://archive.numdam.org/articles/10.4171/rsmup/119/ DO - 10.4171/rsmup/119 LA - en ID - RSMUP_2023__149__45_0 ER -
Yohei Ito. Note on algebraic irregular Riemann–Hilbert correspondence. Rendiconti del Seminario Matematico della Università di Padova, Tome 149 (2023), pp. 45-81. doi : 10.4171/rsmup/119. http://archive.numdam.org/articles/10.4171/rsmup/119/
Cité par Sources :