Integrable derivations in the sense of Hasse–Schmidt for some binomial plane curves
Rendiconti del Seminario Matematico della Università di Padova, Tome 145 (2021), pp. 53-71.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We describe the module of integrable derivations in the sense of Hasse–Schmidt of the quotient of the polynomial ring in two variables over an ideal generated by the equation x n -y q .

Publié le :
DOI : 10.4171/rsmup/49
Classification : 13, 14
@article{RSMUP_2021__145__53_0,
     author = {Tirado Hern\'andez, Mar{\'\i}a de la Paz},
     title = {Integrable derivations in the sense of {Hasse{\textendash}Schmidt} for some binomial plane curves},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {53--71},
     volume = {145},
     year = {2021},
     doi = {10.4171/rsmup/49},
     mrnumber = {4261645},
     zbl = {1467.13040},
     language = {en},
     url = {http://archive.numdam.org/articles/10.4171/rsmup/49/}
}
TY  - JOUR
AU  - Tirado Hernández, María de la Paz
TI  - Integrable derivations in the sense of Hasse–Schmidt for some binomial plane curves
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2021
SP  - 53
EP  - 71
VL  - 145
UR  - http://archive.numdam.org/articles/10.4171/rsmup/49/
DO  - 10.4171/rsmup/49
LA  - en
ID  - RSMUP_2021__145__53_0
ER  - 
%0 Journal Article
%A Tirado Hernández, María de la Paz
%T Integrable derivations in the sense of Hasse–Schmidt for some binomial plane curves
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2021
%P 53-71
%V 145
%U http://archive.numdam.org/articles/10.4171/rsmup/49/
%R 10.4171/rsmup/49
%G en
%F RSMUP_2021__145__53_0
Tirado Hernández, María de la Paz. Integrable derivations in the sense of Hasse–Schmidt for some binomial plane curves. Rendiconti del Seminario Matematico della Università di Padova, Tome 145 (2021), pp. 53-71. doi : 10.4171/rsmup/49. http://archive.numdam.org/articles/10.4171/rsmup/49/

Cité par Sources :