Finitely generated mixed modules of Warfield type
Rendiconti del Seminario Matematico della Università di Padova, Tome 144 (2020), pp. 289-302.
Le texte intégral des articles récents est réservé aux abonnés de la revue.
Consultez l'article sur le site de la revue.
Let be a local one-dimensional domain, with maximal ideal , which is not a valuation domain. We investigate the class of the finitely generated mixed -modules of Warfield type, so called since their construction goes back to R.B. Warfield. We prove that these -modules have local endomorphism rings, hence they are indecomposable. We examine the torsion part of a Warfield type module , investigating the natural property . This property is related to being integral over , where and are elements of that define . We also investigate and determine its minimum number of generators.
@article{RSMUP_2020__144__289_0, author = {Paolo Zanardo}, title = {Finitely generated mixed modules of {Warfield} type}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {289--302}, volume = {144}, year = {2020}, doi = {10.4171/rsmup/71}, mrnumber = {4186461}, zbl = {1476.13031}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/rsmup/71/} }
TY - JOUR AU - Paolo Zanardo TI - Finitely generated mixed modules of Warfield type JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2020 SP - 289 EP - 302 VL - 144 UR - http://archive.numdam.org/articles/10.4171/rsmup/71/ DO - 10.4171/rsmup/71 LA - en ID - RSMUP_2020__144__289_0 ER -
Paolo Zanardo. Finitely generated mixed modules of Warfield type. Rendiconti del Seminario Matematico della Università di Padova, Tome 144 (2020), pp. 289-302. doi : 10.4171/rsmup/71. http://archive.numdam.org/articles/10.4171/rsmup/71/
Cité par Sources :