Inequalities involving π(x)
Rendiconti del Seminario Matematico della Università di Padova, Tome 147 (2022), pp. 237-251.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We present several inequalities involving the prime-counting function π(x). Here, we give two examples of our results. We show that

169π(x)π(y)π2(x+y)

is valid for all integers x,y2. The constant factor 16/9 is the best possible. The special case x=y leads to

43π(2x)π(x)(x=2,3,...),

where the lower bound 4/3 is sharp. This complements Landau’s well-known inequality

π(2x)π(x)2(x=2,3,...).

Moreover, we prove that the inequality

2π(x+y)x+ysπ(x)xs+π(y)ys(0<s)

holds for all integers x,y2 if and only if ss0=0.94745.... Here, s0 is the only positive solution of

167t-65t=1.
Accepté le :
Publié le :
DOI : 10.4171/rsmup/98
Classification : 11
@article{RSMUP_2022__147__237_0,
     author = {Alzer, Horst and Kwong, Man Kam and S\'andor, J\'ozsef},
     title = {Inequalities involving $\pi(x)$},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {237--251},
     volume = {147},
     year = {2022},
     doi = {10.4171/rsmup/98},
     mrnumber = {4450790},
     zbl = {1497.11014},
     language = {en},
     url = {https://www.numdam.org/articles/10.4171/rsmup/98/}
}
TY  - JOUR
AU  - Alzer, Horst
AU  - Kwong, Man Kam
AU  - Sándor, József
TI  - Inequalities involving $\pi(x)$
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2022
SP  - 237
EP  - 251
VL  - 147
UR  - https://www.numdam.org/articles/10.4171/rsmup/98/
DO  - 10.4171/rsmup/98
LA  - en
ID  - RSMUP_2022__147__237_0
ER  - 
%0 Journal Article
%A Alzer, Horst
%A Kwong, Man Kam
%A Sándor, József
%T Inequalities involving $\pi(x)$
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2022
%P 237-251
%V 147
%U https://www.numdam.org/articles/10.4171/rsmup/98/
%R 10.4171/rsmup/98
%G en
%F RSMUP_2022__147__237_0
Alzer, Horst; Kwong, Man Kam; Sándor, József. Inequalities involving $\pi(x)$. Rendiconti del Seminario Matematico della Università di Padova, Tome 147 (2022), pp. 237-251. doi : 10.4171/rsmup/98. https://www.numdam.org/articles/10.4171/rsmup/98/
  • Dimitrov, Stoyan Inequalities involving arithmetic functions, Lithuanian Mathematical Journal, Volume 64 (2024) no. 4, p. 421 | DOI:10.1007/s10986-024-09655-x

Cité par 1 document. Sources : Crossref