Rosen fractions and Veech groups, an overly brief introduction
Actes des rencontres du CIRM, Tome 1 (2009) no. 1, pp. 61-67.

We give a very brief, but gentle, sketch of an introduction both to the Rosen continued fractions and to a geometric setting to which they are related, given in terms of Veech groups. We have kept the informal approach of the talk at the Numerations conference, aimed at an audience assumed to have heard of neither of the topics of the title.

The Rosen continued fractions are a family of continued fraction algorithms, each gives expansions of real numbers in terms of elements of a corresponding algebraic number field. A Veech group is comprised of the Jacobians of locally affine self-maps on a “flat” surface to itself. The Rosen fractions are directly related to a certain family of (projective) matrix groups; these groups are directly related to W.  Veech’s original examples of surfaces with “optimal” dynamics.

Publié le :
DOI : 10.5802/acirm.11
Classification : 37-01, 37-02, 11-01, 11-02, 11J70, 37E35, 37F30
Schmidt, Thomas A. 1

1 Oregon State University Corvallis, OR 97331
@article{ACIRM_2009__1_1_61_0,
     author = {Schmidt, Thomas A.},
     title = {Rosen fractions and {Veech} groups, an overly brief introduction},
     journal = {Actes des rencontres du CIRM},
     pages = {61--67},
     publisher = {CIRM},
     volume = {1},
     number = {1},
     year = {2009},
     doi = {10.5802/acirm.11},
     zbl = {06938559},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/acirm.11/}
}
TY  - JOUR
AU  - Schmidt, Thomas A.
TI  - Rosen fractions and Veech groups, an overly brief introduction
JO  - Actes des rencontres du CIRM
PY  - 2009
SP  - 61
EP  - 67
VL  - 1
IS  - 1
PB  - CIRM
UR  - http://archive.numdam.org/articles/10.5802/acirm.11/
DO  - 10.5802/acirm.11
LA  - en
ID  - ACIRM_2009__1_1_61_0
ER  - 
%0 Journal Article
%A Schmidt, Thomas A.
%T Rosen fractions and Veech groups, an overly brief introduction
%J Actes des rencontres du CIRM
%D 2009
%P 61-67
%V 1
%N 1
%I CIRM
%U http://archive.numdam.org/articles/10.5802/acirm.11/
%R 10.5802/acirm.11
%G en
%F ACIRM_2009__1_1_61_0
Schmidt, Thomas A. Rosen fractions and Veech groups, an overly brief introduction. Actes des rencontres du CIRM, Tome 1 (2009) no. 1, pp. 61-67. doi : 10.5802/acirm.11. http://archive.numdam.org/articles/10.5802/acirm.11/

[A] E. Artin, Ein mechanisches System mit quasi-ergodischen Bahnen, Abh. Math. Sem. Hamburg 3 (1924) 170-175 (and Collected Papers, Springer-Verlag, New York, 1982, 499-505).

[AH] P. Arnoux, P. Hubert, Fractions continues sur les surfaces de Veech, J. Anal. Math. 81 (2000), 35–64. | DOI | MR | Zbl

[B] D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55. Cambridge University Press, Cambridge, 1997.

[Be] F. Berg, Dreiecksgruppen mit Spitzen in quadratischen Zahlkörpern, Abh. Math. Sem. Univ. Hamburg 55 (1985), 191–200. | DOI | Zbl

[BKS] R. Burton, C. Kraaikamp, and T.A. Schmidt, Natural extensions for the Rosen fractions, TAMS 352 (1999), 1277–1298. | DOI | MR | Zbl

[BS] E. Bogomolny and C. Schmit, Multiplicities of periodic orbit lengths for non-arithmetic models, J. Phys. A: Math. Gen. 37, (2004) 4501-4526. | DOI | MR | Zbl

[BSe] R. Bowen, C. Series, Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. No. 50 (1979), 153–170. | DOI | Numdam | Zbl

[C] K. Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004), no. 4, 871–908 | DOI | MR | Zbl

[DKS] K. Dajani, C. Kraaikamp, W. Steiner, Metrical theory for α-Rosen fractions, preprint. ArXiv : 0702516. | DOI | Zbl

[G] E. Gutkin, Billiards in polygons: Survey of recent results, J. Stat. Phys. 83 (1996), 7 – 26. | DOI | MR | Zbl

[GJ] E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J. 103 (2000), 191 – 213. | DOI | MR | Zbl

[HuS] P. Hubert, T. A. Schmidt, An introduction to Veech surfaces; in: Handbook of dynamical systems. Vol. 1B, 501–526, Elsevier B. V., Amsterdam, 2006. | DOI | Zbl

[IS] I. Ivrissimtzis, D. Singerman, Regular maps and principal congruence subgroups of Hecke groups, European J. Combin. 26 (2005), no. 3-4, 437–456. | DOI | MR | Zbl

[KMS] S. Kerckhoff, H. Masur, and J. Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. Math. 124 (1986), 293 – 311. | DOI | MR | Zbl

[Leu] A. Leutbecher Über die Heckeschen Gruppen G(λ), Abh. Math. Sem. Hamb. 31 (1967), 199-205. | DOI | Zbl

[LLT] M.-L. Lang, C.-H. Lim, S.-P. Tan, Principal congruence subgroups of the Hecke groups, J. Number Theory 85 (2) (2000) 220–230. | DOI | MR | Zbl

[Mc] C. McMullen, Teichmüller geodesics of infinite complexity, Acta Math. 191 (2003), no. 2, 191–223 | DOI | Zbl

[MS] D. Mayer and F. Strömberg,Symbolic dynamics for the geodesic flow on Hecke surfaces, J. Mod. Dyn. 2 (2008), no. 4, 581–627. | DOI | MR | Zbl

[MT] H. Masur and S. Tabachnikov, Rational billiards and flat structures, in Handbook on Dynamical Systems, Elsevier 2001, in press. | DOI | Zbl

[N] H. Nakada, Continued fractions, geodesic flows and Ford circles, in Algorithms, Fractals and Dynamics edited by Y. Takahashi, 179–191, Plenum, 1995. | DOI | Zbl

[R] D. Rosen, A Class of Continued Fractions Associated with Certain Properly Discontinuous Groups, Duke Math. J. 21 (1954), 549-563. | DOI | MR | Zbl

[RT] D. Rosen, C. Towse, Continued fraction representations of units associated with certain Hecke groups, Arch. Math. (Basel) 77 (2001), no. 4, 294–302. | DOI | MR | Zbl

[S] J. Smillie, Dynamics of billiard flow in rational polygons; In: Ya. G. Sinai (ed) Dynamical Systems. Encycl. Math. Sci. Vol. 100. Math. Physics 1. Springer Verlag, 360 – 382 (2000) | Zbl

[SS] T. A. Schmidt, M. Sheingorn, Length spectra of the Hecke triangle groups, Math. Z. 220 (1995), no. 3, 369–397 | DOI | MR | Zbl

[SU] J. Smillie and C. Ulcigrai Symbolic coding for linear trajectories in the regular octagon, preprint arXiv:0905.0871. | DOI | MR | Zbl

[T] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. A.M.S. 19 (1988), 417 – 431. | DOI | MR | Zbl

[TetAl] E. Hanson, A. Merberg, C. Towse, and E. Yudovina, Generalized continued fractions and orbits under the action of Hecke triangle groups Acta Arith. 134 (2008), no. 4, 337–348. | DOI | MR | Zbl

[V] W.A. Veech, Teichmuller curves in modular space, Eisenstein series, and an application to triangular billiards, Inv. Math. 97 (1989), 553 – 583. | DOI | Zbl

[Va] M. Viana, Ergodic theory of interval exchange maps Rev. Mat. Complut. 19 (2006), no. 1, 7–100. | DOI | MR | Zbl

[Vo] Ya. B. Vorobets , Plane structures and billiards in rational polyhedra: the Veech alternative (Russian), Uspekhi Mat. Nauk 51, 3–42, (1996); translation in Russian Math. Surveys 51:5 (1996), 779–817 | DOI

[W] L. Washington, Introduction to cyclotomic fields, GTM 83. Springer-Verlag, New York, 1997. | Zbl

[Z] A. Zorich, Flat surfaces; in: Frontiers in number theory, physics, and geometry. I, 437–583, Springer, Berlin, 2006. | DOI | Zbl

Cité par Sources :