@article{AFST_2009_6_18_S2_5_0, author = {Frey, Gerhard}, title = {The {Way} to the {Proof} of {Fermat{\textquoteright}s} {Last} {Theorem}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {5--23}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 18}, number = {S2}, year = {2009}, doi = {10.5802/afst.1227}, zbl = {1201.11001}, mrnumber = {2561373}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1227/} }
TY - JOUR AU - Frey, Gerhard TI - The Way to the Proof of Fermat’s Last Theorem JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2009 SP - 5 EP - 23 VL - 18 IS - S2 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1227/ DO - 10.5802/afst.1227 LA - en ID - AFST_2009_6_18_S2_5_0 ER -
%0 Journal Article %A Frey, Gerhard %T The Way to the Proof of Fermat’s Last Theorem %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2009 %P 5-23 %V 18 %N S2 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://archive.numdam.org/articles/10.5802/afst.1227/ %R 10.5802/afst.1227 %G en %F AFST_2009_6_18_S2_5_0
Frey, Gerhard. The Way to the Proof of Fermat’s Last Theorem. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 18 (2009) no. S2, pp. 5-23. doi : 10.5802/afst.1227. http://archive.numdam.org/articles/10.5802/afst.1227/
[MF] Modular forms and Fermat’s Last Theorem; ed. G. Cornell, J.H. Silverman, G. Stevens, New York (1997). | MR | Zbl
[F1] Frey (G.).— Some remarks concerning points of finite order on elliptic curves over global fields; Arkiv för Mat. 15, p. 1-19 (1977). | MR | Zbl
[F2] Frey (G.).— Links between stable elliptic curves and certain Diophantine equations; Ann. Univ. Saraviensis, 1, p. 1-40 (1986). | MR | Zbl
[F3] Frey (G.).— On ternary equations of Fermat type and relations with elliptic curves; in [MF], 527-548. | MR | Zbl
[He] Hellegouarch (Y.).— Points d’ordre sur les courbes elliptiques; Acta Arith. 26, p. 253-263 (1975). | MR | Zbl
[Ma] Mazur (B.).— Modular curves and the Eisenstein ideal; Publ. math. IHES 47, p. 33-186 (1977). | Numdam | MR | Zbl
[Ri] Ribenboim (P.).— 13 Lectures on Fermat’s Last Theorem; New York (1982). | Zbl
[Rib] Ribet (K.).— On modular representations of arising from modular forms; Inv. Math. 100, p. 431-476 (1990). | MR | Zbl
[Ro] Roquette (P.).— Analytic theory of elliptic functions over local fields; Hamb. Math. Einzelschriften, Neue Folge-Heft 1, Vandenhoeck und Ruprecht, Göttingen (1969). | MR | Zbl
[Se1] Serre (J.-P.).— Propriétés galoisiennes des points d’ordre finis des courbes elliptiques; Inv. Math. 15, p. 259-331 (1972). | MR | Zbl
[Se2] Serre (J.-P.).— Sur les représentations modulaires de degré 2 de ; Duke Math. J. 54, p. 179-230 (1987). | MR | Zbl
[Si] Silverman (J.H.).— The Arithmetic of Elliptic Curves; GTM 106, Berlin and New York (1986). | MR | Zbl
[Ta] Tate (J.).— The arithmetic of elliptic curves; Inv. Math. 23, p. 179-206 (1974). | MR | Zbl
[T-W] Taylor (R.), Wiles (A.).— Ring theoretic properties of certain Hecke algebras; Annals of Math. 141, p. 553-572 (1995). | MR | Zbl
[W] Wiles (A.).— Modular elliptic curves and Fermat’s Last Theorem; Annals of Math. 142, p. 443-551 (1995). | MR | Zbl
Cité par Sources :