An invariant for difference field extensions
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 21 (2012) no. 2, pp. 217-234.

Dans cet article nous introduisons un nouvel invariant pour les extensions de corps aux différences, le degré distant, et discutons ses propriétés.

In this paper we introduce a new invariant for extensions of difference fields, the distant degree, and discuss its properties.

@article{AFST_2012_6_21_2_217_0,
     author = {Chatzidakis, Zo\'e and Hrushovski, Ehud},
     title = {An invariant for difference field extensions},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {217--234},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 21},
     number = {2},
     year = {2012},
     doi = {10.5802/afst.1334},
     mrnumber = {2978095},
     zbl = {1250.12005},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1334/}
}
TY  - JOUR
AU  - Chatzidakis, Zoé
AU  - Hrushovski, Ehud
TI  - An invariant for difference field extensions
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2012
DA  - 2012///
SP  - 217
EP  - 234
VL  - Ser. 6, 21
IS  - 2
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1334/
UR  - https://www.ams.org/mathscinet-getitem?mr=2978095
UR  - https://zbmath.org/?q=an%3A1250.12005
UR  - https://doi.org/10.5802/afst.1334
DO  - 10.5802/afst.1334
LA  - en
ID  - AFST_2012_6_21_2_217_0
ER  - 
Chatzidakis, Zoé; Hrushovski, Ehud. An invariant for difference field extensions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 21 (2012) no. 2, pp. 217-234. doi : 10.5802/afst.1334. http://archive.numdam.org/articles/10.5802/afst.1334/

[1] Cohn (R.M.).— Difference algebra, Tracts in Mathematics 17, Interscience Pub. (1965). | MR 205987 | Zbl 0127.26402

[2] Ivanov (A.A.).— The problem of finite axiomatizability for strongly minimal theories of graphs (Russian), Algebra i Logika 28 (1989), no. 3, p. 280-297, 366; translation in Algebra and Logic 28 (1989), no. 3, p. 183-194 (1990). | MR 1066316 | Zbl 0727.05028

[3] Möller (R.G.).— Structure theory of totally disconnected locally compact groups via graphs and permutations, Canad. J. Math. 54, no. 4, p. 795-827 (2002). | MR 1913920

[4] Pillay (A.).— Geometric stability theory, Oxford Science Publications, Oxford. Univ. Press, New York (1996). | MR 1429864 | Zbl 0871.03023

[5] Willis (G.).— The structure of totally disconnected locally compact groups, Math. Ann. 300, p. 341-363 (1994). | MR 1299067 | Zbl 0811.22004

[6] Willis (G.).— Further properties of the scale function on a totally disconnected group, J. of Algebra 237, p. 142-164 (2001). | MR 1813900

Cité par Sources :