Soit une variété de Hodge et soit . Nous definissons une suite canonique de fonctions telle que dans la topologie . Cette construction admet une interprétation très simple du point de vue de l’application moment. En plus les fonctions sont algébriques réelles, c’est-à-dire qu’elles sont des fonctions régulières sur vue comme variété algébrique réelle. La définition des est inspirée de la quantification de Berezin-Toeplitz et s’appuie sur des idées de Donaldson. La preuve découle très vite de certains résultats dus à Fine, Liu et Ma.
If is a Hodge manifold and we construct a canonical sequence of functions such that in the topology. These functions have a simple geometric interpretation in terms of the moment map and they are real algebraic, in the sense that they are regular functions when is regarded as a real algebraic variety. The definition of is inspired by Berezin-Toeplitz quantization and by ideas of Donaldson. The proof follows quickly from known results of Fine, Liu and Ma.
@article{AFST_2012_6_21_4_769_0, author = {Ghigi, Alessandro}, title = {On the approximation of functions on a {Hodge} manifold}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {769--781}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 21}, number = {4}, year = {2012}, doi = {10.5802/afst.1350}, mrnumber = {3052030}, zbl = {1254.32036}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1350/} }
TY - JOUR AU - Ghigi, Alessandro TI - On the approximation of functions on a Hodge manifold JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2012 DA - 2012/// SP - 769 EP - 781 VL - Ser. 6, 21 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1350/ UR - https://www.ams.org/mathscinet-getitem?mr=3052030 UR - https://zbmath.org/?q=an%3A1254.32036 UR - https://doi.org/10.5802/afst.1350 DO - 10.5802/afst.1350 LA - en ID - AFST_2012_6_21_4_769_0 ER -
Ghigi, Alessandro. On the approximation of functions on a Hodge manifold. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 21 (2012) no. 4, pp. 769-781. doi : 10.5802/afst.1350. http://archive.numdam.org/articles/10.5802/afst.1350/
[1] Bochnak (J.), Coste (M.), and Roy (M.-F.).— Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin (1998). Translated from the 1987 French original, Revised by the authors. | MR 1659509 | Zbl 0633.14016
[2] Bordemann (M.), Meinrenken (E.), and Schlichenmaier (M.).— Toeplitz quantization of Kähler manifolds and , limits. Comm. Math. Phys., 165(2), p. 281-296 (1994). | MR 1301849 | Zbl 0813.58026
[3] Bouche (T.).— Convergence de la métrique de Fubini-Study d’un fibré linéaire positif. Ann. Inst. Fourier (Grenoble), 40(1), p. 117-130 (1990). | Numdam | MR 1056777 | Zbl 0685.32015
[4] Catlin (D.).— The Bergman kernel and a theorem of Tian. In Analysis and geometry in several complex variables (Katata, 1997), Trends Math., pages 1-23. Birkhäuser Boston, Boston, MA (1999). | MR 1699887 | Zbl 0941.32002
[5] Charles.— Berezin-Toeplitz operators, a semi-classical approach. Comm. Math. Phys., 239(1-2), p. 1-28 (2003). | MR 1997113 | Zbl 1059.47030
[6] Donaldson (S. K.).— Some numerical results in complex differential geometry. Pure Appl. Math. Q., 5(2, Special Issue: In honor of Friedrich Hirzebruch. Part 1), p. 571-618 (2009). | MR 2508897 | Zbl 1178.32018
[7] Fine (J.).— Calabi flow and projective embeddings. J. Differential Geom., 84(3), p. 489-523 (2010). Appendix written by Kefeng Liu & Xiaonan Ma. | MR 2669363 | Zbl 1202.32018
[8] Hua (L. K.).— Harmonic analysis of functions of several complex variables in the classical domains. Translated from the Russian by Leo Ebner and Adam Korányi. American Mathematical Society, Providence, R.I. (1963). | MR 171936 | Zbl 0507.32025
[9] Kirwan (F. C.).— Cohomology of quotients in symplectic and algebraic geometry, volume 31 of Mathematical Notes. Princeton University Press, Princeton, NJ (1984). | MR 766741 | Zbl 0553.14020
[10] Krantz (S. G.).— Function theory of several complex variables. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, second edition (1992). | MR 1162310 | Zbl 0776.32001
[11] Krantz (S. G.).— On a construction of L. Hua for positive reproducing kernels. Michigan Math. J., 59(1), p. 211-230 (2010). | MR 2654148 | Zbl 1197.32002
[12] Ma (X.) and Marinescu (G.).— Holomorphic Morse inequalities and Bergman kernels, volume 254 of Progress in Mathematics. Birkhäuser Verlag, Basel (2007). | MR 2339952 | Zbl 1135.32001
[13] Ma (X.) and Marinescu (G.).— Berezin-Toeplitz quantization on Kähler manifolds. arXiv:math.DG/1009.4405 (2010). Preprint. | Zbl 1251.47030
[14] Schlichenmaier (M.).— Zwei Anwendungen algebraisch-geometrischer Methoden in der theoretischen Physik. 1996. Universität Mannheim. http://math.uni.lu/schlichenmaier/preprints/method en.ps.gz.
[15] Shiffman (B.) and Zelditch (S.).— Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds. J. Reine Angew. Math., 544, p. 181-222 (2002). | MR 1887895 | Zbl 1007.53058
[16] Shiffman (B.) and Zelditch (S.).— Number variance of random zeros on complex manifolds. Geom. Funct. Anal., 18(4), p. 1422-1475 (2008). | MR 2465693 | Zbl 1168.32009
[17] Tian (G.).— On a set of polarized Kähler metrics on algebraic manifolds. J. Differential Geom., 32(1), p. 99-130 (1990). | MR 1064867 | Zbl 0706.53036
[18] Varolin (D.).— Geometry of Hermitian algebraic functions. Quotients of squared norms. Amer. J. Math., 130(2), p. 291-315 (2008). | MR 2405157 | Zbl 1146.32008
[19] Zelditch (S.).— Szegő kernels and a theorem of Tian. Internat. Math. Res. Notices, 6, p. 317-331 (1998). | MR 1616718 | Zbl 0922.58082
Cité par Sources :