Théorie L p et dualité de Serre pour l’équation de Cauchy-Riemann
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 2, pp. 251-279.

In this paper we propose a systematic study of the Cauchy-Riemann operator in the L p -setting in complex manifolds. We first consider L loc p -theory and then we develop an L p Andreotti-Grauert theory. In the second half of the paper we consider Serre duality and its applications to the solvability of the Cauchy-Riemann equation with exact support in L p -spaces.

Dans cet article nous proposons une étude systématique de la théorie L p pour l’opérateur de Cauchy-Riemann dans les variétés complexes. Dans une première partie nous étudions la théorie L p locale puis nous développons la théorie d’Andreotti-Grauert dans le cadre L p . La seconde moitié de l’article est consacrée à la dualité de Serre et à ses applications à la résolution avec support exact de l’équation de Cauchy-Riemann dans les espaces L p .

@article{AFST_2015_6_24_2_251_0,
     author = {Laurent-Thi\'ebaut, Christine},
     title = {Th\'eorie $L^p$ et dualit\'e de {Serre} pour l{\textquoteright}\'equation de {Cauchy-Riemann}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {251--279},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {6e s{\'e}rie, 24},
     number = {2},
     year = {2015},
     doi = {10.5802/afst.1448},
     mrnumber = {3358613},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/afst.1448/}
}
TY  - JOUR
AU  - Laurent-Thiébaut, Christine
TI  - Théorie $L^p$ et dualité de Serre pour l’équation de Cauchy-Riemann
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
SP  - 251
EP  - 279
VL  - 24
IS  - 2
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1448/
DO  - 10.5802/afst.1448
LA  - fr
ID  - AFST_2015_6_24_2_251_0
ER  - 
%0 Journal Article
%A Laurent-Thiébaut, Christine
%T Théorie $L^p$ et dualité de Serre pour l’équation de Cauchy-Riemann
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 251-279
%V 24
%N 2
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://archive.numdam.org/articles/10.5802/afst.1448/
%R 10.5802/afst.1448
%G fr
%F AFST_2015_6_24_2_251_0
Laurent-Thiébaut, Christine. Théorie $L^p$ et dualité de Serre pour l’équation de Cauchy-Riemann. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 24 (2015) no. 2, pp. 251-279. doi : 10.5802/afst.1448. http://archive.numdam.org/articles/10.5802/afst.1448/

[1] AbdelKader (O.) and Khidr (S.).— L p -estimates for solutions of ¯-equation on strongly q-convex domains, Mathematica Slovaca 54, p. 337-348 (2004). | MR | Zbl

[2] AbdelKader (O.) and Khidr (S.).— Solutions to ¯-equation on strongly pseudo-convex domains with L p -estimates, Electronic Journal of Differential Equations 73, p. 1-9 (2004). | MR | Zbl

[3] AbdelKader (O.) and Khidr (S.).— Solutions to ¯-equation on strongly q-convex domains with L p -estimates, International Journal of Geometric Methods in Modern Physics 1, p. 739-749 (2004). | MR | Zbl

[4] Amar (E.).— An Andreotti-Grauert theorem with L r estimates, ArXiv :1203.0759v3, (2012).

[5] Amar (E.) and Mongodi (S.).— On L r hypoellipticity of solutions with compact support of the Cauchy-Riemann equation, Ann. Mat. Pura Appl. 193, p. 999-1018 (2014). | MR | Zbl

[6] Beals (R.), Greiner (P.C.), and Stanton (N.).— L p and Lipschitz estimates for the ¯-equation and the ¯-Neumann problem, Math. Ann. 277, p. 185-196 (1987). | MR | Zbl

[7] Chakrabarti (D.) and Shaw (M.-C.).— L 2 Serre duality on domains in complex manifolds and applications, Trans. Amer. Math. Soc. 364, p. 3529-3554 (2012). | MR | Zbl

[8] Charpentier (P.).— Formules explicites pour les solutions minimales de l’équation ¯u=f dans la boule et dans le polydisque de n , Ann. Inst. Fourier 30, p. 121-154 (1980). | Numdam | MR | Zbl

[9] Chen (S.-C.) and Shaw (M.-C.).— Partial differential equations in several complex variables, Studies in Advanced Math., vol. 19, AMS-International Press, (2001). | MR | Zbl

[10] Folland (G. B.) and Kohn (J. J.).— The Neumann problem for the Cauchy-Riemann complex, Ann. Math. Studies, vol. 75, Princeton University Press, Princeton, N.J., (1972). | MR | Zbl

[11] Goldberg (S.).— Unbounded linear operators, theory and applications, McGraw-Hill, New York, St. Louis, San Francisco, (1966). | MR | Zbl

[12] Grisvard (P.).— Elliptic problems in non smooth domains, Pitman, Boston, (1985). | Zbl

[13] Henkin (G. M.) and Leiterer (J.).— Theory of functions on complex manifolds, Birkhaüser, Basel, Boston, Berlin, (1984). | MR | Zbl

[14] Henkin (G. M.) and Leiterer (J.).— Andreotti-Grauert theory by integral formulas, Progress in Math., vol. 74, Birkhaüser, Basel, Boston, Berlin, (1988). | MR | Zbl

[15] Hörmander (L.).— An introduction to complex analysis in several complex variables, Van Nostrand, Princeton, N.J., (1990).

[16] Kerzman (N.).— Hölder and L p estimates for solutions of ¯u=f in strongly pseudoconvex domains, Comm. Pure. Appl. Math. 24, p. 301-379 (1971). | MR | Zbl

[17] Khidr (S.).— Solving ¯ with L p -estimates on q-convex domains in complex manifolds, Complex Variables and Elliptic Equations 53, p. 253-263 (2008). | MR | Zbl

[18] Laurent-Thiébaut (C.).— Théorie des fonctions holomorphes de plusieurs variables, Savoirs actuels, InterEditions/CNRS Editions, Paris, (1997).

[19] Laurent-Thiébaut (C.) and Shaw (M.C.).— On the Hausdorff property of some Dolbeault cohomology groups, Math. Zeitschrift 274, p. 1165-1176 (2013). | MR

[20] Li (X.-D.).— L p estimates and existence theorems for the ¯-operator on complete Kähler manifolds, Advances in Math. 224, p. 620-647 (2010). | MR | Zbl

[21] Ma (L.).— Hölder and L p estimates for the ¯-equation on non smooth strictly q-convex domains, Manuscripta Math. 74, p. 177-193 (1992). | MR | Zbl

[22] Ma (L.) and Vassiliadou (S.).— L p estimates for the Cauchy-Riemann operator on q-convex intersections in n , Manuscripta Math. 103, p. 413-433 (2000). | MR | Zbl

[23] Menini (C.).— Estimations pour la résolution du ¯ sur une intersection d’ouverts strictement pseudoconvexes, Math. Zeitschrift 225, p. 87-93 (1997). | MR | Zbl

[24] Ovrelid (N.).— Integral representation formulas and L p estimates for the ¯ equation, Math. Scand 29, p. 137-160 (1971). | MR | Zbl

Cited by Sources: