On quantitative convergence to quasi-stationarity
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 4, pp. 973-1016.

On cherche à quantifier le comportement en temps long des processus de Markov finis, absorbés et supposés irréductibles en dehors du point absorbant. Par le biais de transformations de Doob, on montre qu’il est juste besoin du ratio maximal des valeurs prises par le premier vecteur propre de Dirichlet associé pour se ramener à la situation bien plus étudiée de la convergence à l’équilibre des processus de Markov finis. On obtient ainsi des estimées explicites de convergence à la quasi-stationnarité, en particulier via l’utilisation d’inégalités fonctionnelles. Quand le processus est de plus réversible, on retrouve le taux optimal de convergence exponentielle donné par le trou spectral entre les deux premières valeurs propres de Dirichlet. Plusieurs exemples simples illustrent les bornes obtenues.

The quantitative long time behavior of absorbing, finite, irreducible Markov processes is considered. Via Doob transforms, it is shown that only the knowledge of the ratio of the values of the underlying first Dirichlet eigenvector is necessary to come back to the well-investigated situation of the convergence to equilibrium of ergodic finite Markov processes. This leads to explicit estimates on the convergence to quasi-stationarity, in particular via functional inequalities. When the process is reversible, the optimal exponential rate consisting of the spectral gap between the two first Dirichlet eigenvalues is recovered. Several simple examples are provided to illustrate the bounds obtained.

DOI : 10.5802/afst.1472
Diaconis, Persi 1 ; Miclo, Laurent 2

1 Stanford University, Department of Mathematic, Building 380, Sloan Hall, Stanford, California 94305, USA
2 Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
@article{AFST_2015_6_24_4_973_0,
     author = {Diaconis, Persi and Miclo, Laurent},
     title = {On quantitative convergence to quasi-stationarity},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {973--1016},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 24},
     number = {4},
     year = {2015},
     doi = {10.5802/afst.1472},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1472/}
}
TY  - JOUR
AU  - Diaconis, Persi
AU  - Miclo, Laurent
TI  - On quantitative convergence to quasi-stationarity
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
SP  - 973
EP  - 1016
VL  - 24
IS  - 4
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1472/
DO  - 10.5802/afst.1472
LA  - en
ID  - AFST_2015_6_24_4_973_0
ER  - 
%0 Journal Article
%A Diaconis, Persi
%A Miclo, Laurent
%T On quantitative convergence to quasi-stationarity
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 973-1016
%V 24
%N 4
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://archive.numdam.org/articles/10.5802/afst.1472/
%R 10.5802/afst.1472
%G en
%F AFST_2015_6_24_4_973_0
Diaconis, Persi; Miclo, Laurent. On quantitative convergence to quasi-stationarity. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 4, pp. 973-1016. doi : 10.5802/afst.1472. http://archive.numdam.org/articles/10.5802/afst.1472/

[1] Ané (C.), Blachère (S.), Chafaï (D.), Fougères (P.), Gentil (I.), Malrieu (F.), Roberto (C.), and Scheffer (G.).— Sur les inégalités de Sobolev logarithmiques, volume 10 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris (2000). With a preface by Dominique Bakry and Michel Ledoux. | Zbl

[2] Barbour (A. D.) and Pollett (P. K.).— Total variation approximation for quasi-stationary distributions. J. Appl. Probab., 47(4), p. 934-946 (2010). | MR | Zbl

[3] Barbour (A. D.) and Pollett (P. K.).— Total variation approximation for quasi-equilibrium distributions, II. Stochastic Process. Appl., 122(11), p. 3740-3756 (2012). | MR | Zbl

[4] Bobkov (S. G.) and Tetali (P.).— Modified logarithmic Sobolev inequalities in discrete settings. J. Theoret. Probab., 19(2), p. 289-336 (2006). | MR | Zbl

[5] Champagnat (N.) and Villemonais (D.).— Exponential convergence to quasi-stationary distribution and Q-process. ArXiv e-prints, April 2014.

[6] Cloez (B.) and Thai (M. N.).— Quantitative results for the Fleming-Viot particle system in discrete space. ArXiv e-prints, December 2013.

[7] Collet (P.), Martínez (S.), and San Martín (J.). Quasi-stationary distributions.— Markov chains, diffusions and dynamical systems. Probability and its Applications (New York). Springer, Heidelberg (2013). | MR | Zbl

[8] Defosseux (M.).— Fusion coefficients and random walks in alcoves. ArXiv e-prints, July 2013.

[9] Del Moral (P.).— Mean field simulation for Monte Carlo integration, volume 126 of Monographs on Statistics and Applied Probability. CRC Press, Boca Raton, FL (2013). | MR | Zbl

[10] Del Moral (P.) and Miclo (L.).— Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM Probab. Stat., 7, p. 171-208 (2003). | Numdam | MR | Zbl

[11] Diaconis (P.), Amy Pang (C. Y.), and Ram (A.).— Hopf algebras and Markov chains: two examples and a theory. J. Algebraic Combin., 39(3), p. 527-585 (2014). | MR | Zbl

[12] Diaconis (P.) and Saloff-Coste (L.).— Comparison theorems for reversible Markov chains. Ann. Appl. Probab., 3(3), p. 696-730 (1993). | MR | Zbl

[13] Diaconis (P.) and Saloff-Coste (L.).— Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Probab., 6(3), p. 695-750 (1996). | MR | Zbl

[14] Diaconis (P.) and Saloff-Coste (L.).— Nash inequalities for finite Markov chains. J. Theoret. Probab., 9(2), p. 459-510 (1996). | MR | Zbl

[15] Diaconis (P.) and Saloff-Coste (L.).— What do we know about the Metropolis algorithm? J. Comput. System Sci., 57(1), p. 20-36 (1998). 27th Annual ACM Symposium on the Theory of Computing (STOC’95) (Las Vegas, NV). | MR | Zbl

[16] Diaconis (P.) and Stroock (D.).— Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab., 1(1), p. 36-61 (1991). | MR | Zbl

[17] Fill (J. A.).— Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process. Ann. Appl. Probab., 1(1), p. 62-87 (1991). | MR | Zbl

[18] Gyrya (P.) and Saloff-Coste (L.).— Neumann and Dirichlet heat kernels in inner uniform domains. Astérisque, (336), p. viii+144 (2011). | Numdam | MR | Zbl

[19] Holley (R.) and Stroock (D.).— Simulated annealing via Sobolev inequalities. Comm. Math. Phys., 115(4), p. 553-569 (1988). | MR | Zbl

[20] Jerrum (M.) and Sinclair (A.).— Approximating the permanent. SIAM J. Comput., 18(6), p. 1149-1178 (1989). | MR | Zbl

[21] Jacka (S. D.) and Roberts (G. O.).— Weak convergence of conditioned processes on a countable state space. J. Appl. Probab., 32(4), p. 902-916 (1995.) | MR | Zbl

[22] Jiang (Y.).— Mixing Time of Metropolis Chain Based on Random Transposition Walk Converging to Multivariate Ewens Distribution. ArXiv e-prints, April 2012. | MR

[23] Lierl (J.) and Saloff-Coste (L.).— The Dirichlet heat kernel in inner uniform domains: local results, compact domains and non-symmetric forms. ArXiv e-prints, October 2012. | MR | Zbl

[24] Méléard (S.) and Villemonais (D.).— Quasi-stationary distributions and population processes. Probab. Surv., 9, p. 340-410 (2012). | MR | Zbl

[25] Miclo (L.).— Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de Markov finies. In Séminaire de Probabilités, XXXI, volume 1655 of Lecture Notes in Math., pages 136-167. Springer, Berlin (1997). | Numdam | MR | Zbl

[26] Miclo (L.).— On eigenfunctions of Markov processes on trees. Probab. Theory Related Fields, 142(3-4), p. 561-594 (2008). | MR | Zbl

[27] Miclo (L.).— On hyperboundedness and spectrum of Markov operators. Available at http://hal.archives-ouvertes.fr/hal-00777146, January 2013.

[28] Saloff-Coste (L.).— Lectures on finite Markov chains. In Lectures on probability theory and statistics (Saint-Flour, 1996), volume 1665 of Lecture Notes in Math., p. 301-413. Springer, Berlin (1997). | MR | Zbl

[29] van Doorn (E. A.).— Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. Adv. in Appl. Probab., 23(4), p. 683-700 (1991). | MR | Zbl

[30] van Doorn (E. A.) and Pollett (P. K.).— Quasi-stationary distributions for discrete-state models. European J. Oper. Res., 230(1), p. 1-14 (2013). | MR

[31] van Doorn (E. A.) and Zeifman (A. I.).— On the speed of convergence to stationarity of the Erlang loss system. Queueing Syst., 63(1-4), p. 241-252 (2009). | MR | Zbl

[32] Zhou (H.).— Examples of multivariate Markov chains with orthogonal polynomial eigenfunctions. Ph.D. thesis, dept. of statistics, Stanford University (2008). | MR

Cité par Sources :