On vérifie la formalité de l’algèbre exterieure de munie du grand crochet considérée comme une algèbre de Poisson graduée. On discute la pertinence de ce resultat pour les déformations de bigèbres d’une algèbre symétrique de considérée comme une bigèbre.
In this paper we prove formality of the exterior algebra on endowed with the big bracket considered as a graded Poisson algebra. We also discuss connection of this result to bialgebra deformations of the symmetric algebra of considered as bialgebra.
@article{AFST_2016_6_25_2-3_569_0, author = {Hinich, Vladimir and Lemberg, Dan}, title = {Formality theorem and bialgebra deformations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {569--582}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 25}, number = {2-3}, year = {2016}, doi = {10.5802/afst.1505}, zbl = {1410.17018}, mrnumber = {3530169}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1505/} }
TY - JOUR AU - Hinich, Vladimir AU - Lemberg, Dan TI - Formality theorem and bialgebra deformations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2016 DA - 2016/// SP - 569 EP - 582 VL - Ser. 6, 25 IS - 2-3 PB - Université Paul Sabatier, Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1505/ UR - https://zbmath.org/?q=an%3A1410.17018 UR - https://www.ams.org/mathscinet-getitem?mr=3530169 UR - https://doi.org/10.5802/afst.1505 DO - 10.5802/afst.1505 LA - en ID - AFST_2016_6_25_2-3_569_0 ER -
Hinich, Vladimir; Lemberg, Dan. Formality theorem and bialgebra deformations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 25 (2016) no. 2-3, pp. 569-582. doi : 10.5802/afst.1505. http://archive.numdam.org/articles/10.5802/afst.1505/
[1] Cohen (F.).— Cohomology of braid spaces, Bulletin AMS, 79, p. 763-766 (1973). | Article | MR 321074 | Zbl 0272.55012
[2] Crans (S.).— Quillen closed model structures for sheaves, JPAA, 101, p. 35-57 (1995). | Article | MR 1346427 | Zbl 0828.18005
[3] Drinfeld (V.).— Quasi-Hopf algebras, Leningrad Math. Journal, 1, p. 1419-1457 (1990). | MR 1047964 | Zbl 0718.16033
[4] Getzler (E.), Jones (J.).— Operads, homotopy algebra and iterated integrals for double loop spaces, arXiv:hep-th/9403055.
[5] Gerstenhaber (M.), Schack (S.).— Bialgebra cohomology, deformations and quantum groups, Proceedings of NAS 87, p. 478-481 (1990). | Article | MR 1031952 | Zbl 0695.16005
[6] Hinich (V.).— Tamarkin’s proof of Kontsevich formality theorem, Forum Mathematicum, 15, p. 591-614 (2003). | Article | MR 1978336 | Zbl 1081.16014
[7] Hinich (V.), Lemberg (D.).— Noncommutative unfolding of hypersurface singularity, J. Noncommut. Geom. 8, no. 4, p. 1147-1169 (2014). | Article | MR 3310943 | Zbl 1314.13030
[8] Kontsevich (M.).— Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66, p. 157-216 (2003). | Article | MR 2062626 | Zbl 1058.53065
[9] Kosmann-Schwarzbach (Y.).— Grand crochet, crochets de Schouten et cohomologies d’algèbres de Lie, C. R. Acad. Sci. Paris Sér. I Math. 312, no. 1, p. 123-126 (1991). | MR 1086516 | Zbl 0726.17029
[10] Lambrechts (P.), Volic (I.).— Formality of the little N-discs operad, Memoirs AMS, 230, no. 1079 (2014).
[11] Lurie (J.).— Higher algebra, manuscript available from the author’s homepage (http://www.math.harvard.edu/ lurie/).
[12] Lurie (J.).— Formal moduli problems (DAG X), manuscript available from the author’s homepage (http://www.math.harvard.edu/ lurie/).
[13] Lurie (J.).— Moduli problems for ring spectra, manuscript available from the author’s homepage (http://www.math.harvard.edu/ lurie/). | Article | Zbl 1244.55007
[14] Lazarev (A.), Movshev (M.).— Deformations of Hopf algebras, Russian Math. Surveys, 4, p. 253-254 (1991). | Article | MR 1109044 | Zbl 0785.16023
[15] McClure (J.), Smith (J.).— A solution of Deligne’s Hochschild cohomology conjecture | Article
[16] Merkulov (S.), Vallette (B.).— Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math., 634, p. 51-106 (2009). | Article | MR 2560406 | Zbl 1187.18006
[17] Schauenburg (P.).— Hopf modules and Yetter-Drinfeld modules, J. Algebra 169, p. 874-890 (1994). | Article | Zbl 0810.16037
[18] Shoikhet (B.).— Tetramodules over a bialgebra form a 2-fold monoidal category, Appl. Categ. Structures, 21, p. 291-309 (2013). | Article | MR 3047010 | Zbl 1288.18006
[19] Shoikhet (B.).— Differential graded categories and Deligne conjecture, arXiv 1303.2500. | Article
[20] Taillefer (R.).— Injective Hopf bimodules, cohomologies of infinite-dimensional Hopf algebras and graded commutativity of the Yoneda product, J. Algebra 276, p. 259-279 (2004). | Article
[21] Tamarkin (D.).— Another proof of Kontsevich formality theorem, arXiv:math/9802... | Article
Cité par Sources :