One-sided convergence in the Boltzmann–Grad limit
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 5, pp. 985-1022.

Ce papier présente diverses contributions basées sur le travail fondamental de Lanford [21] qui a permis d’obtenir l’équation de Boltzmann à partir de la dynamique (réversible) des sphères dures dans la limite de densité faible.

On s’intéresse en particulier aux hypothèses sur la donnée initiale et sur la façon dont elles codent l’irréversibilité. On montre que l’impossibilité de renverser le sens du temps dans l’équation de Boltzmann (qui est exprimée notamment dans le théorème H) est liée à l’absence de convergence des marginales d’ordre supérieur sur des ensembles singuliers. Un contre exemple explicite permet de caractériser les ensembles, de mesure asymptotiquement nulle, où la donnée initiale doit converger pour obtenir la dynamique de Boltzmann.

We review various contributions on the fundamental work of Lanford [21] deriving the Boltzmann equation from (reversible) hard-sphere dynamics in the low density limit.

We focus especially on the assumptions made on the initial data and on how they encode irreversibility. The impossibility to reverse time in the Boltzmann equation (expressed for instance by Boltzmann’s H-theorem) is related to the lack of convergence of higher order marginals on some singular sets. Explicit counterexamples single out the sets with vanishing measure where the initial data should converge in order to produce the Boltzmann dynamics.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1589
@article{AFST_2018_6_27_5_985_0,
     author = {Bodineau, Thierry and Gallagher, Isabelle and Saint-Raymond, Laure and Simonella, Sergio},
     title = {One-sided convergence in the {Boltzmann{\textendash}Grad} limit},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {985--1022},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 27},
     number = {5},
     year = {2018},
     doi = {10.5802/afst.1589},
     mrnumber = {3919546},
     zbl = {1416.35174},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1589/}
}
TY  - JOUR
AU  - Bodineau, Thierry
AU  - Gallagher, Isabelle
AU  - Saint-Raymond, Laure
AU  - Simonella, Sergio
TI  - One-sided convergence in the Boltzmann–Grad limit
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2018
DA  - 2018///
SP  - 985
EP  - 1022
VL  - Ser. 6, 27
IS  - 5
PB  - Université Paul Sabatier, Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1589/
UR  - https://www.ams.org/mathscinet-getitem?mr=3919546
UR  - https://zbmath.org/?q=an%3A1416.35174
UR  - https://doi.org/10.5802/afst.1589
DO  - 10.5802/afst.1589
LA  - en
ID  - AFST_2018_6_27_5_985_0
ER  - 
Bodineau, Thierry; Gallagher, Isabelle; Saint-Raymond, Laure; Simonella, Sergio. One-sided convergence in the Boltzmann–Grad limit. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 5, pp. 985-1022. doi : 10.5802/afst.1589. http://archive.numdam.org/articles/10.5802/afst.1589/

[1] Alexander, Roger Keith The Infinite Hard Sphere System (1975) (Ph. D. Thesis) | MR 2625918

[2] Arkeryd, Leif; Cercignani, Carlo Global existence in L 1 for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation, J. Stat. Phys., Volume 59 (1990) no. 3-4, pp. 845-867 | Article | MR 1063185 | Zbl 0780.76066

[3] Ayi, Nathalie From Newton’s law to the linear Boltzmann equation without cut-off, Commun. Math. Phys., Volume 350 (2017) no. 3, pp. 1219-1274 | MR 3607474 | Zbl 1360.82076

[4] Bardos, Claude Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport, Ann. Sci. Éc. Norm. Supér., Volume 3 (1970) no. 2, pp. 185-233 | Article | Zbl 0202.36903

[5] van Beijeren, Henk; Lanford, Oscar E. III; Lebowitz, Joel L.; Spohn, Herbert Equilibrium time correlation functions in the low-density limit, J. Stat. Phys., Volume 22 (1980) no. 2, pp. 237-257 | Article | MR 560556

[6] Bellomo, Nicola; Lachowicz, Mirosław; Polewczak, Jacek; Toscani, Giuseppe Mathematical Topics in Nonlinear Kinetic Theory II: The Enskog Equation, Series on Advances in Mathematics for Applied Sciences, World Scientific, 1991, xii+207 pages | Zbl 0733.76061

[7] Bodineau, Thierry; Gallagher, Isabelle; Saint-Raymond, Laure The Brownian motion as the limit of a deterministic system of hard-spheres, Invent. Math., Volume 203 (2015) no. 2, pp. 1-61 | MR 3455156 | Zbl 1337.35107

[8] Bodineau, Thierry; Gallagher, Isabelle; Saint-Raymond, Laure From hard sphere dynamics to the Stokes-Fourier equations: an L 2 analysis of the Boltzmann-Grad limit, Ann. PDE, Volume 3 (2017) no. 1, 2, 118 pages (Art ID 2, 118 p.) | MR 3625187 | Zbl 06919591

[9] Boltzmann, Ludwig E. Lectures on Gas Theory / Vorlesungen über Gastheorie (1896), University of California Press, 1964 (english translation by S. G. Brush)

[10] Boltzmann, Ludwig E. Further Studies on the Thermal Equilibrium of Gas Molecules (1872), The Kinetic Theory of Gases (History of Modern Physical Sciences), Volume 1, World Scientific, 2003, pp. 262-349 | Article

[11] Cercignani, Carlo On the Boltzmann equation for rigid spheres, Transp. Theory Stat. Phys., Volume 2 (1972), pp. 211-225 | MR 449375 | Zbl 0295.76048

[12] Cercignani, Carlo Ludwig Boltzmann, The man who trusted atoms, Oxford University Press, 1998, xvi+359 pages | Zbl 0917.01028

[13] Cercignani, Carlo; Illner, Reinhard; Pulvirenti, Mario The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, 106, Springer, 1994, vii+347 pages | MR 1307620 | Zbl 0813.76001

[14] Denlinger, Ryan The propagation of chaos for a rarefied gas of hard spheres in the whole space, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 2, pp. 885-952 | Article | MR 3803778 | Zbl 1397.35164

[15] Gallagher, Isabelle; Saint-Raymond, Laure; Texier, Benjamin From Newton to Boltzmann : the case of hard-spheres and short-range potentials, Zürich Lectures in Advanced Mathematics, European Mathematical Society, 2014, xii+137 pages | Zbl 1315.82001

[16] Goldstein, Sheldon; Lebowitz, Joel L. On the (Boltzmann) Entropy of Non-equilibrium Systems, Physica D, Volume 193 (2004) no. 1-4, pp. 53-66 | Article | MR 2075374 | Zbl 1076.82518

[17] Grad, Harold Principles of the kinetic theory of gases, Thermodynamik der Gase (Handbuch der Physik), Volume 3, Springer, 1958, pp. 205-294 | Article

[18] Hewitt, Edwin; Savage, Leonard J. Symmetric measures on Cartesian products, Trans. Am. Math. Soc., Volume 80 (1955), pp. 470-501 | Article | MR 76206 | Zbl 0066.29604

[19] King, F. G. BBGKY hierarchy for positive potentials (19785) (Ph. D. Thesis)

[20] Kotecký, Roman Cluster expansions, Encyclopedia of Mathematical Physics, Elsevier, 2006, pp. 531-536 | Article

[21] Lanford, Oscar E. III Time evolution of large classical systems, Dynamical systems, theory and applications (Lecture Notes in Physics), Volume 38, Springer, 1975, pp. 1-111 | Article | MR 479206 | Zbl 0329.70011

[22] Lanford, Oscar E. III On a derivation of the Boltzmann equation (Astérisque), Volume 40, Société Mathématique de France, 1976, pp. 117-137 | Numdam | Zbl 0353.70020

[23] Lebowitz, Joel L. From Time-Symmetric Microscopic Dynamics to Time-Asymmetric Macroscopic Behavior: An Overview, Boltzmann’s legacy (ESI Lectures in Mathematics and Physics) (2007), pp. 63-89

[24] Loschmidt, J. Anz. Kais. Akad. Wiss., Math. Naturwiss. Classe, 73 (1876), pp. 128-142

[25] Poghosyan, Suren; Ueltschi, Daniel Abstract cluster expansion with applications to statistical mechanical systems, J. Math. Phys., Volume 50 (2009) no. 5, 053509, 17 pages (Art. ID 053509, 17 p.) | MR 2531305 | Zbl 1187.82009

[26] Pulvirenti, Elena; Tsagkarogiannis, Dimitrios Cluster Expansion in the Canonical Ensemble, Commun. Math. Phys., Volume 316 (2012) no. 2, pp. 289-306 | Article | MR 2993917 | Zbl 1260.82057

[27] Pulvirenti, Mario; Saffirio, Chiara; Simonella, Sergio On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys., Volume 26 (2014) no. 2, 1450001, 64 pages (Art. ID 1450001, 64 p.) | MR 3190204 | Zbl 1296.82051

[28] Pulvirenti, Mario; Simonella, Sergio On the evolution of the empirical measure for the hard-sphere dynamics, Bull. Inst. Math., Acad. Sin., Volume 10 (2015) no. 2, pp. 171-204 | MR 3409818 | Zbl 1322.82008

[29] Pulvirenti, Mario; Simonella, Sergio The Boltzmann-Grad Limit of a Hard Sphere System: Analysis of the Correlation Error, Invent. Math., Volume 207 (2017) no. 3, pp. 1135-1237 | Article | MR 3608289 | Zbl 1372.35211

[30] Simonella, Sergio Evolution of correlation functions in the hard sphere dynamics, J. Stat. Phys., Volume 155 (2014) no. 6, pp. 1191-1221 | Article | MR 3207735 | Zbl 1297.82019

[31] Spohn, Herbert Boltzmann hierarchy and Boltzmann equation, Kinetic theories and the Boltzmann equation (Montecatini, 1981) (Lecture Notes in Mathematics), Volume 1048, Springer, 1984, pp. 207-220 | Article | MR 740726 | Zbl 0559.76073

[32] Spohn, Herbert Large scale dynamics of interacting particles, Texts and Monographs in Physics, 174, Springer, 1991, xi+342 pages | Zbl 0742.76002

[33] Spohn, Herbert Loschmidt’s Reversibility Argument and the H-Theorem, Pioneering Ideas for the Physical and Chemical Sciences, Springer, 1997, pp. 153-157 | Article

[34] Ueltschi, Daniel Cluster expansions and correlation functions, Mosc. Math. J., Volume 4 (2004) no. 2, pp. 511-522 | Article | MR 2108447 | Zbl 1070.82002

[35] Ukai, Seiji The Boltzmann-Grad Limit and Cauchy-Kovalevskaya Theorem, Japan J. Ind. Appl. Math., Volume 18 (2001) no. 2, pp. 383-392 | Article | MR 1842918 | Zbl 0981.35004

Cité par Sources :