On the classification of normal G-varieties with spherical orbits
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 2, pp. 271-334.

In this article, we investigate the geometry of reductive group actions on algebraic varieties. Given a connected reductive group G, we elaborate on a geometric and combinatorial approach based on Luna–Vust theory to describe every normal G-variety with spherical orbits. This description encompasses the classical case of spherical varieties and the theory of 𝕋-varieties recently introduced by Altmann, Hausen, and Süss.

Dans cet article, nous étudions la géométrie des opérations de groupes réductifs dans les variétés algébriques. Étant donné un groupe algébrique réductif connexe G, nous élaborons une approche géométrique et combinatoire basée sur la théorie de Luna–Vust pour décrire toute G-variété normale avec orbites sphériques. Cette description comprend le cas classique des variétés sphériques et la théorie des 𝕋-variétés introduite récemment par Altmann, Hausen et Süss.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1632
Classification: 14L30, 14M27, 14M25, 13A18
Keywords: action of algebraic groups, Luna–Vust theory, homogeneous spaces, valuation theory
Langlois, Kevin 1

1 Mathematisches Institut, Heinrich Heine Universität, 40225 Düsseldorf, Germany
@article{AFST_2020_6_29_2_271_0,
     author = {Langlois, Kevin},
     title = {On the classification of normal $G$-varieties with spherical orbits},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {271--334},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {2},
     year = {2020},
     doi = {10.5802/afst.1632},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1632/}
}
TY  - JOUR
AU  - Langlois, Kevin
TI  - On the classification of normal $G$-varieties with spherical orbits
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 271
EP  - 334
VL  - 29
IS  - 2
PB  - Université Paul Sabatier, Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1632/
DO  - 10.5802/afst.1632
LA  - en
ID  - AFST_2020_6_29_2_271_0
ER  - 
%0 Journal Article
%A Langlois, Kevin
%T On the classification of normal $G$-varieties with spherical orbits
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 271-334
%V 29
%N 2
%I Université Paul Sabatier, Toulouse
%U http://archive.numdam.org/articles/10.5802/afst.1632/
%R 10.5802/afst.1632
%G en
%F AFST_2020_6_29_2_271_0
Langlois, Kevin. On the classification of normal $G$-varieties with spherical orbits. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 2, pp. 271-334. doi : 10.5802/afst.1632. http://archive.numdam.org/articles/10.5802/afst.1632/

[1] Ahiezer, Dmitry Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom., Volume 1 (1983) no. 1, pp. 49-78 | DOI | MR

[2] Alexeev, Valery; Brion, Michel Moduli of affine schemes with reductive group action, J. Algebr. Geom., Volume 14 (2005) no. 1, pp. 83-117 | DOI | MR | Zbl

[3] Alexeev, Valery; Brion, Michel Stable spherical varieties and their moduli, IMRP, Int. Math. Res. Pap. (2006), 46293, 57 pages | MR | Zbl

[4] Altmann, Klaus; Hausen, Jürgen Polyhedral divisors and algebraic torus actions, Math. Ann., Volume 334 (2006) no. 3, pp. 557-607 | DOI | MR | Zbl

[5] Altmann, Klaus; Hausen, Jürgen; Süss, Hendrik Gluing affine torus actions via divisorial fans, Transform. Groups, Volume 13 (2008) no. 2, pp. 215-242 | DOI | MR | Zbl

[6] Altmann, Klaus; Ilten, Nathan Owen; Petersen, Lars; Süss, Hendrik; Vollmert, Robert The geometry of T-varieties, Contributions to algebraic geometry (EMS Series of Congress Reports), European Mathematical Society, 2012, pp. 17-69 | Zbl

[7] Arzhantsev, Ivan V. Actions of the group SL 2 that are of complexity one, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 61 (1997) no. 4, pp. 3-18 translation in Izv. Math. 61 (1997), no. 4, p. 685-698 | MR

[8] Arzhantsev, Ivan V. On the actions of reductive groups with a one-parameter family of spherical orbits, Mat. Sb., Volume 188 (1997) no. 5, pp. 3-20 translation in Sb. Math. 188 (1997), no. 5, p. 639-655 | MR | Zbl

[9] Arzhantsev, Ivan V. On the normality of closures of spherical orbits, Funkts. Anal. Prilozh., Volume 31 (1997) no. 4, pp. 66-69 translation in Funct. Anal. Appl. 31 (1997), no. 4, p. 278-280 | MR | Zbl

[10] Arzhantsev, Ivan V. A classification of reductive linear groups with spherical orbits, J. Lie Theory, Volume 12 (2002) no. 1, pp. 289-299 | MR | Zbl

[11] Arzhantsev, Ivan V. Invariant differential operators and representations with spherical orbits, Symmetry in nonlinear mathematical physics, Part 1, 2 (Kyiv, 2001) (Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine. Mathematics and its Applications), Volume 43(2), Institute of Mathematics of NAS of Ukraine, 2002, pp. 419-424 | MR | Zbl

[12] Avdeev, Roman S. On solvable spherical subgroups of semisimple algebraic groups, Trans. Mosc. Math. Soc. (2011), pp. 1-44 | MR | Zbl

[13] Avdeev, Roman S. Strongly solvable spherical subgroups and their combinatorial invariants, Sel. Math., New Ser., Volume 21 (2015) no. 3, pp. 931-993 | DOI | MR | Zbl

[14] Batyrev, Victor V. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebr. Geom., Volume 3 (1994) no. 3, pp. 493-535 | MR | Zbl

[15] Bravi, Paolo; Pezzini, Guido Wonderful subgroups of reductive groups and spherical systems, J. Algebra, Volume 409 (2014), pp. 101-147 | DOI | MR | Zbl

[16] Bravi, Paolo; Pezzini, Guido The spherical systems of the wonderful reductive subgroups, J. Lie Theory, Volume 25 (2015) no. 1, pp. 105-123 | MR | Zbl

[17] Bravi, Paolo; Pezzini, Guido Primitive wonderful varieties, Math. Z., Volume 282 (2016) no. 3-4, pp. 1067-1096 | DOI | MR

[18] Brion, Michel Sur la géométrie des variétés sphériques, Comment. Math. Helv., Volume 66 (1991) no. 2, pp. 237-262 | DOI | Zbl

[19] Brion, Michel Invariants et covariants des groupes algébriques réductifs., Summer course note at Monastir, 1996 (https://www-fourier.ujf-grenoble.fr/~mbrion/monastirrev.pdf)

[20] Brion, Michel Curves and divisors in spherical varieties, Algebraic groups and Lie groups (Australian Mathematical Society Lecture Series), Volume 9, Cambridge University Press, 1997, pp. 21-34 | MR | Zbl

[21] Brion, Michel; Luna, Dominique; Vust, Thierry Espaces homogènes sphériques, Invent. Math., Volume 84 (1986) no. 3, pp. 617-632 | DOI | Zbl

[22] Brion, Michel; Pauer, Franz Valuations des espaces homogènes sphériques, Comment. Math. Helv., Volume 62 (1987) no. 2, pp. 265-285 | DOI | Zbl

[23] Colliot-Thélène, Jean-Louis; Kunyavskiĭ, Boris; Popov, Vladimir L.; Reichstein, Zinovy Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?, Compos. Math., Volume 147 (2011) no. 2, pp. 428-466 | DOI | MR | Zbl

[24] Cupit-Foutou, Stéphanie Wonderful varieties: A geometrical realization (2009) (https://arxiv.org/abs/0907.2852)

[25] De Concini, Corrado; Procesi, Claudio Complete symmetric varieties, Invariant theory (Montecatini, 1982) (Lecture Notes in Mathematics), Volume 996, Springer, 1983, pp. 1-44 | DOI | MR | Zbl

[26] Demazure, Michel Anneaux gradués normaux, Introduction à la théorie des singularités, II (Travaux en Cours), Volume 37, Hermann, 1988, pp. 35-68 | Zbl

[27] Dolgačev, Igor V. Automorphic forms, and quasihomogeneous singularities, Funkts. Anal. Prilozh., Volume 9 (1975) no. 2, pp. 67-68 | MR | Zbl

[28] Flenner, Hubert; Zaidenberg, Mikhail Normal affine surfaces with -actions, Osaka J. Math., Volume 40 (2003) no. 4, pp. 981-1009 | MR | Zbl

[29] Fulton, William Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993 (The William H. Roever Lectures in Geometry) | MR | Zbl

[30] Fulton, William; MacPherson, Robert; Sottile, Frank; Sturmfels, Bernd Intersection theory on spherical varieties, J. Algebr. Geom., Volume 4 (1995) no. 1, pp. 181-193 | MR | Zbl

[31] Gagliardi, Giuliano A combinatorial smoothness criterion for spherical varieties, Manuscr. Math., Volume 146 (2015) no. 3-4, pp. 445-461 | DOI | MR | Zbl

[32] Gagliardi, Giuliano; Hofscheier, Johannes The generalized Mukai conjecture for symmetric varieties, Trans. Am. Math. Soc., Volume 369 (2017) no. 4, pp. 2615-2649 | DOI | MR | Zbl

[33] Grothendieck, Alexander Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math., Inst. Hautes Étud. Sci., Volume 8 (1961), pp. 1-222 | Numdam | Zbl

[34] Grothendieck, Alexander Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5, Séminaire de Géométrie Algébrique, 1960/61, Institut des Hautes Études Scientifiques, 1963

[35] Hausen, Jürgen; Süss, Hendrik The Cox ring of an algebraic variety with torus action, Adv. Math., Volume 225 (2010) no. 2, pp. 977-1012 | DOI | MR | Zbl

[36] Kempf, George; Knudsen, Finn Faye; Mumford, David; Saint-Donat, Bernard Toroidal embeddings. I, Lecture Notes in Mathematics, 339, Springer, 1973 | MR | Zbl

[37] Knop, Friedrich Weylgruppe und Momentabbildung, Invent. Math., Volume 99 (1990) no. 1, pp. 1-23 | DOI | MR | Zbl

[38] Knop, Friedrich The Luna–Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan (1991), pp. 225-249 | Zbl

[39] Knop, Friedrich Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind, Math. Ann., Volume 295 (1993) no. 2, pp. 333-363 | DOI | Zbl

[40] Knop, Friedrich Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z., Volume 213 (1993) no. 1, pp. 33-36 | DOI | Zbl

[41] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | MR | Zbl

[42] Langlois, Kevin Clôture intégrale et opérations de tores algébriques de complexité un dans les variétés affines, Transform. Groups, Volume 18 (2013) no. 3, pp. 739-765 | DOI | MR | Zbl

[43] Langlois, Kevin Polyhedral divisors and torus actions of complexity one over arbitrary fields, J. Pure Appl. Algebra, Volume 219 (2015) no. 6, pp. 2015-2045 | DOI | MR | Zbl

[44] Langlois, Kevin Singularités canoniques et actions horosphériques, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 4, pp. 365-369 | DOI | MR | Zbl

[45] Langlois, Kevin; Pech, Clélia; Raibaut, Michel Stringy invariants for horospherical varieties of complexity one, Algebr. Geom., Volume 6 (2019) no. 3, pp. 346-383 | MR | Zbl

[46] Langlois, Kevin; Terpereau, Ronan On the geometry of normal horospherical G-varieties of complexity one, J. Lie Theory, Volume 26 (2016) no. 1, pp. 49-78 | MR | Zbl

[47] Langlois, Kevin; Terpereau, Ronan The Cox ring of a complexity-one horospherical variety, Arch. Math., Volume 108 (2017) no. 1, pp. 17-27 | DOI | MR | Zbl

[48] Liu, Qing Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002 (Translated from the French by Reinie Erné, Oxford Science Publications) | MR | Zbl

[49] Losev, Ivan V. Uniqueness property for spherical homogeneous spaces, Duke Math. J., Volume 147 (2009) no. 2, pp. 315-343 | DOI | MR | Zbl

[50] Luna, Dominique Toute variété magnifique est sphérique, Transform. Groups, Volume 1 (1996) no. 3, pp. 249-258 | DOI | Zbl

[51] Luna, Dominique Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups (Australian Mathematical Society Lecture Series), Volume 9, Cambridge University Press, 1997, pp. 267-280

[52] Luna, Dominique Variétés sphériques de type A, Publ. Math., Inst. Hautes Étud. Sci., Volume 94 (2001), pp. 161-226 | DOI | Numdam | Zbl

[53] Luna, Dominique; Vust, Thierry Plongements d’espaces homogènes, Comment. Math. Helv., Volume 58 (1983) no. 2, pp. 186-245 | DOI | Zbl

[54] Matsumura, Hideyuki Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989 (Translated from the Japanese by M. Reid) | MR | Zbl

[55] Mumford, David Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970 | MR | Zbl

[56] Pasquier, Boris Variétés horosphériques de Fano, Bull. Soc. Math. Fr., Volume 136 (2008) no. 2, pp. 195-225 | DOI | Numdam | MR | Zbl

[57] Pasquier, Boris The pseudo-index of horospherical Fano varieties, Int. J. Math., Volume 21 (2010) no. 9, pp. 1147-1156 | DOI | MR | Zbl

[58] Pauer, Franz Normale Einbettungen von G/U, Math. Ann., Volume 257 (1981) no. 3, pp. 371-396 | DOI | MR | Zbl

[59] Perrin, Nicolas On the geometry of spherical varieties, Transform. Groups, Volume 19 (2014) no. 1, pp. 171-223 | DOI | MR | Zbl

[60] Petersen, Lars; Süss, Hendrik Torus invariant divisors, Isr. J. Math., Volume 182 (2011), pp. 481-504 | DOI | MR | Zbl

[61] Pinkham, Henry Normal surface singularities with C * action, Math. Ann., Volume 227 (1977) no. 2, pp. 183-193 | DOI | MR | Zbl

[62] Richardson, Roger W. Jr. Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math., Volume 16 (1972), pp. 6-14 | DOI | MR | Zbl

[63] Rosenlicht, Maxwell A remark on quotient spaces, Anais Acad. Brasil. Ci., Volume 35 (1963), pp. 487-489 | MR | Zbl

[64] Satake, Ichirô On representations and compactifications of symmetric Riemannian spaces, Ann. Math., Volume 71 (1960), pp. 77-110 | DOI | MR | Zbl

[65] Serre, Jean-Pierre Galois cohomology, Springer, 1997 (Translated from the French by Patrick Ion and revised by the author) | Zbl

[66] Springer, Tonny A. Aktionen reduktiver Gruppen auf Varietäten, Algebraische Transformationsgruppen und Invariantentheorie (DMV Seminar), Volume 13, Birkhäuser, 1989, pp. 3-39 | DOI | MR | Zbl

[67] Sumihiro, Hideyasu Equivariant completion, J. Math. Kyoto Univ., Volume 14 (1974), pp. 1-28 | DOI | MR

[68] Süss, Hendrik Fano threefolds with 2-torus action: a picture book, Doc. Math., Volume 19 (2014), pp. 905-940 | MR | Zbl

[69] Timashëv, Dmitry A. Classification of G-manifolds of complexity 1, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 61 (1997) no. 2, pp. 127-162 translation in Izv. Math., 61 (1997), no. 2, p. 363-397 | MR | Zbl

[70] Timashëv, Dmitry A. Cartier divisors and geometry of normal G-varieties, Transform. Groups, Volume 5 (2000) no. 2, pp. 181-204 | DOI | MR | Zbl

[71] Timashëv, Dmitry A. Torus actions of complexity one, Toric topology (Contemporary Mathematics), Volume 460, American Mathematical Society, 2008, pp. 349-364 | DOI | MR | Zbl

[72] Timashëv, Dmitry A. Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, 138, Springer, 2011 | MR | Zbl

[73] Vinberg, Èrnest B. Complexity of actions of reductive groups, Funkts. Anal. Prilozh., Volume 20 (1986) no. 1, p. 1-13, 96 | DOI | MR

[74] Vinberg, Èrnest B.; Popov, Vladimir L. A certain class of quasihomogeneous affine varieties, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 749-764 | MR

[75] Vinberg, Èrnest B.; Popov, Vladimir L. Invariant theory, Algebraic geometry, 4 (Russian) (Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Fundamental’nye Napravleniya), Vsesoyuznyĭ Institut Nauchnoĭ i Tekhnicheskoĭ Informatsii, 1989, pp. 137-314 | Zbl

[76] Vust, Thierry Plongements d’espaces symétriques algébriques: une classification, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (1990) no. 2, pp. 165-195 | Numdam | MR | Zbl

[77] Wasserman, Ben Wonderful varieties of rank two, Transform. Groups, Volume 1 (1996) no. 4, pp. 375-403 | DOI | MR | Zbl

Cited by Sources: