In this article, we investigate the geometry of reductive group actions on algebraic varieties. Given a connected reductive group , we elaborate on a geometric and combinatorial approach based on Luna–Vust theory to describe every normal -variety with spherical orbits. This description encompasses the classical case of spherical varieties and the theory of -varieties recently introduced by Altmann, Hausen, and Süss.
Dans cet article, nous étudions la géométrie des opérations de groupes réductifs dans les variétés algébriques. Étant donné un groupe algébrique réductif connexe , nous élaborons une approche géométrique et combinatoire basée sur la théorie de Luna–Vust pour décrire toute -variété normale avec orbites sphériques. Cette description comprend le cas classique des variétés sphériques et la théorie des -variétés introduite récemment par Altmann, Hausen et Süss.
Accepted:
Published online:
Keywords: action of algebraic groups, Luna–Vust theory, homogeneous spaces, valuation theory
@article{AFST_2020_6_29_2_271_0, author = {Langlois, Kevin}, title = {On the classification of normal $G$-varieties with spherical orbits}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {271--334}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {2}, year = {2020}, doi = {10.5802/afst.1632}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1632/} }
TY - JOUR AU - Langlois, Kevin TI - On the classification of normal $G$-varieties with spherical orbits JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 271 EP - 334 VL - 29 IS - 2 PB - Université Paul Sabatier, Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1632/ DO - 10.5802/afst.1632 LA - en ID - AFST_2020_6_29_2_271_0 ER -
%0 Journal Article %A Langlois, Kevin %T On the classification of normal $G$-varieties with spherical orbits %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 271-334 %V 29 %N 2 %I Université Paul Sabatier, Toulouse %U http://archive.numdam.org/articles/10.5802/afst.1632/ %R 10.5802/afst.1632 %G en %F AFST_2020_6_29_2_271_0
Langlois, Kevin. On the classification of normal $G$-varieties with spherical orbits. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 2, pp. 271-334. doi : 10.5802/afst.1632. http://archive.numdam.org/articles/10.5802/afst.1632/
[1] Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom., Volume 1 (1983) no. 1, pp. 49-78 | DOI | MR
[2] Moduli of affine schemes with reductive group action, J. Algebr. Geom., Volume 14 (2005) no. 1, pp. 83-117 | DOI | MR | Zbl
[3] Stable spherical varieties and their moduli, IMRP, Int. Math. Res. Pap. (2006), 46293, 57 pages | MR | Zbl
[4] Polyhedral divisors and algebraic torus actions, Math. Ann., Volume 334 (2006) no. 3, pp. 557-607 | DOI | MR | Zbl
[5] Gluing affine torus actions via divisorial fans, Transform. Groups, Volume 13 (2008) no. 2, pp. 215-242 | DOI | MR | Zbl
[6] The geometry of -varieties, Contributions to algebraic geometry (EMS Series of Congress Reports), European Mathematical Society, 2012, pp. 17-69 | Zbl
[7] Actions of the group that are of complexity one, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 61 (1997) no. 4, pp. 3-18 translation in Izv. Math. 61 (1997), no. 4, p. 685-698 | MR
[8] On the actions of reductive groups with a one-parameter family of spherical orbits, Mat. Sb., Volume 188 (1997) no. 5, pp. 3-20 translation in Sb. Math. 188 (1997), no. 5, p. 639-655 | MR | Zbl
[9] On the normality of closures of spherical orbits, Funkts. Anal. Prilozh., Volume 31 (1997) no. 4, pp. 66-69 translation in Funct. Anal. Appl. 31 (1997), no. 4, p. 278-280 | MR | Zbl
[10] A classification of reductive linear groups with spherical orbits, J. Lie Theory, Volume 12 (2002) no. 1, pp. 289-299 | MR | Zbl
[11] Invariant differential operators and representations with spherical orbits, Symmetry in nonlinear mathematical physics, Part 1, 2 (Kyiv, 2001) (Proceedings of the Institute of Mathematics of the National Academy of Sciences of Ukraine. Mathematics and its Applications), Volume 43(2), Institute of Mathematics of NAS of Ukraine, 2002, pp. 419-424 | MR | Zbl
[12] On solvable spherical subgroups of semisimple algebraic groups, Trans. Mosc. Math. Soc. (2011), pp. 1-44 | MR | Zbl
[13] Strongly solvable spherical subgroups and their combinatorial invariants, Sel. Math., New Ser., Volume 21 (2015) no. 3, pp. 931-993 | DOI | MR | Zbl
[14] Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebr. Geom., Volume 3 (1994) no. 3, pp. 493-535 | MR | Zbl
[15] Wonderful subgroups of reductive groups and spherical systems, J. Algebra, Volume 409 (2014), pp. 101-147 | DOI | MR | Zbl
[16] The spherical systems of the wonderful reductive subgroups, J. Lie Theory, Volume 25 (2015) no. 1, pp. 105-123 | MR | Zbl
[17] Primitive wonderful varieties, Math. Z., Volume 282 (2016) no. 3-4, pp. 1067-1096 | DOI | MR
[18] Sur la géométrie des variétés sphériques, Comment. Math. Helv., Volume 66 (1991) no. 2, pp. 237-262 | DOI | Zbl
[19] Invariants et covariants des groupes algébriques réductifs., Summer course note at Monastir, 1996 (https://www-fourier.ujf-grenoble.fr/~mbrion/monastirrev.pdf)
[20] Curves and divisors in spherical varieties, Algebraic groups and Lie groups (Australian Mathematical Society Lecture Series), Volume 9, Cambridge University Press, 1997, pp. 21-34 | MR | Zbl
[21] Espaces homogènes sphériques, Invent. Math., Volume 84 (1986) no. 3, pp. 617-632 | DOI | Zbl
[22] Valuations des espaces homogènes sphériques, Comment. Math. Helv., Volume 62 (1987) no. 2, pp. 265-285 | DOI | Zbl
[23] Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?, Compos. Math., Volume 147 (2011) no. 2, pp. 428-466 | DOI | MR | Zbl
[24] Wonderful varieties: A geometrical realization (2009) (https://arxiv.org/abs/0907.2852)
[25] Complete symmetric varieties, Invariant theory (Montecatini, 1982) (Lecture Notes in Mathematics), Volume 996, Springer, 1983, pp. 1-44 | DOI | MR | Zbl
[26] Anneaux gradués normaux, Introduction à la théorie des singularités, II (Travaux en Cours), Volume 37, Hermann, 1988, pp. 35-68 | Zbl
[27] Automorphic forms, and quasihomogeneous singularities, Funkts. Anal. Prilozh., Volume 9 (1975) no. 2, pp. 67-68 | MR | Zbl
[28] Normal affine surfaces with -actions, Osaka J. Math., Volume 40 (2003) no. 4, pp. 981-1009 | MR | Zbl
[29] Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993 (The William H. Roever Lectures in Geometry) | MR | Zbl
[30] Intersection theory on spherical varieties, J. Algebr. Geom., Volume 4 (1995) no. 1, pp. 181-193 | MR | Zbl
[31] A combinatorial smoothness criterion for spherical varieties, Manuscr. Math., Volume 146 (2015) no. 3-4, pp. 445-461 | DOI | MR | Zbl
[32] The generalized Mukai conjecture for symmetric varieties, Trans. Am. Math. Soc., Volume 369 (2017) no. 4, pp. 2615-2649 | DOI | MR | Zbl
[33] Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math., Inst. Hautes Étud. Sci., Volume 8 (1961), pp. 1-222 | Numdam | Zbl
[34] Revêtements étales et groupe fondamental. Fasc. I: Exposés 1 à 5, Séminaire de Géométrie Algébrique, 1960/61, Institut des Hautes Études Scientifiques, 1963
[35] The Cox ring of an algebraic variety with torus action, Adv. Math., Volume 225 (2010) no. 2, pp. 977-1012 | DOI | MR | Zbl
[36] Toroidal embeddings. I, Lecture Notes in Mathematics, 339, Springer, 1973 | MR | Zbl
[37] Weylgruppe und Momentabbildung, Invent. Math., Volume 99 (1990) no. 1, pp. 1-23 | DOI | MR | Zbl
[38] The Luna–Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan (1991), pp. 225-249 | Zbl
[39] Über Bewertungen, welche unter einer reduktiven Gruppe invariant sind, Math. Ann., Volume 295 (1993) no. 2, pp. 333-363 | DOI | Zbl
[40] Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins, Math. Z., Volume 213 (1993) no. 1, pp. 33-36 | DOI | Zbl
[41] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | MR | Zbl
[42] Clôture intégrale et opérations de tores algébriques de complexité un dans les variétés affines, Transform. Groups, Volume 18 (2013) no. 3, pp. 739-765 | DOI | MR | Zbl
[43] Polyhedral divisors and torus actions of complexity one over arbitrary fields, J. Pure Appl. Algebra, Volume 219 (2015) no. 6, pp. 2015-2045 | DOI | MR | Zbl
[44] Singularités canoniques et actions horosphériques, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 4, pp. 365-369 | DOI | MR | Zbl
[45] Stringy invariants for horospherical varieties of complexity one, Algebr. Geom., Volume 6 (2019) no. 3, pp. 346-383 | MR | Zbl
[46] On the geometry of normal horospherical -varieties of complexity one, J. Lie Theory, Volume 26 (2016) no. 1, pp. 49-78 | MR | Zbl
[47] The Cox ring of a complexity-one horospherical variety, Arch. Math., Volume 108 (2017) no. 1, pp. 17-27 | DOI | MR | Zbl
[48] Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, 6, Oxford University Press, 2002 (Translated from the French by Reinie Erné, Oxford Science Publications) | MR | Zbl
[49] Uniqueness property for spherical homogeneous spaces, Duke Math. J., Volume 147 (2009) no. 2, pp. 315-343 | DOI | MR | Zbl
[50] Toute variété magnifique est sphérique, Transform. Groups, Volume 1 (1996) no. 3, pp. 249-258 | DOI | Zbl
[51] Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups (Australian Mathematical Society Lecture Series), Volume 9, Cambridge University Press, 1997, pp. 267-280
[52] Variétés sphériques de type , Publ. Math., Inst. Hautes Étud. Sci., Volume 94 (2001), pp. 161-226 | DOI | Numdam | Zbl
[53] Plongements d’espaces homogènes, Comment. Math. Helv., Volume 58 (1983) no. 2, pp. 186-245 | DOI | Zbl
[54] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989 (Translated from the Japanese by M. Reid) | MR | Zbl
[55] Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, 1970 | MR | Zbl
[56] Variétés horosphériques de Fano, Bull. Soc. Math. Fr., Volume 136 (2008) no. 2, pp. 195-225 | DOI | Numdam | MR | Zbl
[57] The pseudo-index of horospherical Fano varieties, Int. J. Math., Volume 21 (2010) no. 9, pp. 1147-1156 | DOI | MR | Zbl
[58] Normale Einbettungen von , Math. Ann., Volume 257 (1981) no. 3, pp. 371-396 | DOI | MR | Zbl
[59] On the geometry of spherical varieties, Transform. Groups, Volume 19 (2014) no. 1, pp. 171-223 | DOI | MR | Zbl
[60] Torus invariant divisors, Isr. J. Math., Volume 182 (2011), pp. 481-504 | DOI | MR | Zbl
[61] Normal surface singularities with action, Math. Ann., Volume 227 (1977) no. 2, pp. 183-193 | DOI | MR | Zbl
[62] Principal orbit types for algebraic transformation spaces in characteristic zero, Invent. Math., Volume 16 (1972), pp. 6-14 | DOI | MR | Zbl
[63] A remark on quotient spaces, Anais Acad. Brasil. Ci., Volume 35 (1963), pp. 487-489 | MR | Zbl
[64] On representations and compactifications of symmetric Riemannian spaces, Ann. Math., Volume 71 (1960), pp. 77-110 | DOI | MR | Zbl
[65] Galois cohomology, Springer, 1997 (Translated from the French by Patrick Ion and revised by the author) | Zbl
[66] Aktionen reduktiver Gruppen auf Varietäten, Algebraische Transformationsgruppen und Invariantentheorie (DMV Seminar), Volume 13, Birkhäuser, 1989, pp. 3-39 | DOI | MR | Zbl
[67] Equivariant completion, J. Math. Kyoto Univ., Volume 14 (1974), pp. 1-28 | DOI | MR
[68] Fano threefolds with 2-torus action: a picture book, Doc. Math., Volume 19 (2014), pp. 905-940 | MR | Zbl
[69] Classification of -manifolds of complexity , Izv. Ross. Akad. Nauk, Ser. Mat., Volume 61 (1997) no. 2, pp. 127-162 translation in Izv. Math., 61 (1997), no. 2, p. 363-397 | MR | Zbl
[70] Cartier divisors and geometry of normal -varieties, Transform. Groups, Volume 5 (2000) no. 2, pp. 181-204 | DOI | MR | Zbl
[71] Torus actions of complexity one, Toric topology (Contemporary Mathematics), Volume 460, American Mathematical Society, 2008, pp. 349-364 | DOI | MR | Zbl
[72] Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, 138, Springer, 2011 | MR | Zbl
[73] Complexity of actions of reductive groups, Funkts. Anal. Prilozh., Volume 20 (1986) no. 1, p. 1-13, 96 | DOI | MR
[74] A certain class of quasihomogeneous affine varieties, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 36 (1972), pp. 749-764 | MR
[75] Invariant theory, Algebraic geometry, 4 (Russian) (Itogi Nauki i Tekhniki. Seriya Sovremennye Problemy Matematiki. Fundamental’nye Napravleniya), Vsesoyuznyĭ Institut Nauchnoĭ i Tekhnicheskoĭ Informatsii, 1989, pp. 137-314 | Zbl
[76] Plongements d’espaces symétriques algébriques: une classification, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 17 (1990) no. 2, pp. 165-195 | Numdam | MR | Zbl
[77] Wonderful varieties of rank two, Transform. Groups, Volume 1 (1996) no. 4, pp. 375-403 | DOI | MR | Zbl
Cited by Sources: