We give a survey on special polynomials associated with algebraic solutions of the sixth Painlevé equation, and formulate a conjecture regarding a combinatorial formula for Umemura polynomials associated with a class of algebraic solutions of with two discrete parameters.
Nous donnons un survol des polynômes spéciaux associés aux solutions algébriques de la sixième équation de Painlevé, et formulons une conjecture concernant une formule combinatoire pour les polynômes d’Umemura associés à une classe de solutions algébriques de avec deux paramètres discrets.
Mots-clés : Umemura polynomial, Painlevé equation, Toda equation, special polynomial
@article{AFST_2020_6_29_5_1091_0, author = {Noumi, Masatoshi}, title = {Notes on {Umemura} polynomials}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {1091--1118}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 29}, number = {5}, year = {2020}, doi = {10.5802/afst.1658}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1658/} }
TY - JOUR AU - Noumi, Masatoshi TI - Notes on Umemura polynomials JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2020 SP - 1091 EP - 1118 VL - 29 IS - 5 PB - Université Paul Sabatier, Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1658/ DO - 10.5802/afst.1658 LA - en ID - AFST_2020_6_29_5_1091_0 ER -
%0 Journal Article %A Noumi, Masatoshi %T Notes on Umemura polynomials %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2020 %P 1091-1118 %V 29 %N 5 %I Université Paul Sabatier, Toulouse %U http://archive.numdam.org/articles/10.5802/afst.1658/ %R 10.5802/afst.1658 %G en %F AFST_2020_6_29_5_1091_0
Noumi, Masatoshi. Notes on Umemura polynomials. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume à la mémoire de Hiroshi Umemura : “Équations de Painlevé et théories de Galois différentielles”, Volume 29 (2020) no. 5, pp. 1091-1118. doi : 10.5802/afst.1658. http://archive.numdam.org/articles/10.5802/afst.1658/
[1] On the middle convolution and birational symmetries of the sixth Painlevé equation, Kumamoto J. Math., Volume 19 (2006), pp. 15-23 | MR | Zbl
[2] Middle convolution and deformation for Fuchsian systems, J. Lond. Math. Soc., Volume 76 (2007), pp. 438-450 | DOI | MR | Zbl
[3] Painlevé equations and Umemura polynomials, 2003 (Master’s thesis, Kobe University, in Japanese)
[4] Generalized Umemura polynomials, Rocky Mt. J. Math., Volume 32 (2002) no. 2, pp. 691-702 in Conference on Special Functions (Tempe, AZ, 2000) | MR | Zbl
[5] Generalized Umemura polynomials and the Hirota-Miwa equation, MathPhys odyssey, 2001 (Progress in Mathematics), Volume 23, Birkhäuser, 2002, pp. 313-331 | DOI | MR | Zbl
[6] Algebraic solutions of the sixth Painlevé equation, J. Geom. Phys., Volume 85 (2014), pp. 124-163 | DOI | Zbl
[7] Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford University Press, 1995 | Zbl
[8] On a class of algebraic solutions to the Painlevé VI equation, Funkc. Ekvacioj, Volume 46 (2003) no. 1, pp. 121-171 | DOI | MR | Zbl
[9] Painlevé Equations through Symmetry, Translations of Mathematical Monographs, 223, American Mathematical Society, 2004, x+156 pages | Zbl
[10] Special polynomials associated with the Painlevé equations II, Integrable Systems and Algebraic Geometry Kyoto/Kobe 1997, World Scientific, 1997, pp. 349-372 | Zbl
[11] Birational Weyl group action arising from a nilpotent Poisson algebra, Physics and combinatorics 1999 (Nagoya), World Scientific, 2001, pp. 287-319 | DOI | Zbl
[12] A new Lax pair for the sixth Painlevé equation associated with , Microlocal Analysis and complex Fourier Analysis, World Scientific, 2002, pp. 238-252 | DOI | Zbl
[13] Integral transformation of solutions of a Fuchs-class equation, that corresponds to the Okamoto transformation of the Painlevé VI equation, Theor. Math. Phys., Volume 146 (2006) no. 3, pp. 295-303 | DOI | MR
[14] Studies on the Painlevé equations I. Sixth Painlevé equation , Ann. Mat. Pura Appl., Volume 146 (1987), pp. 337-381 | DOI | Zbl
[15] Polynomials associated with an algebraic solution of the sixth Painlevé equation, Jpn. J. Math., Volume 27 (2001) no. 2, pp. 257-274 | DOI | MR | Zbl
[16] Irreducibility of the first differential equation of Painlevé, Algebraic Geometry and Commutative Algebra, Volume 771, Konokuniya Company Ltd., 1988, pp. 771-789 | DOI | Zbl
[17] Second proof of the irreducibility of the first differential equation of Painlevé, Nagoya Math. J., Volume 117 (1990), pp. 125-171 | DOI | Zbl
[18] Painlevé equations and classical functions, Sugaku Expo., Volume 11 (1995) no. 4, pp. 77-100 translation of Sūgaku 47 (1995), p. 341-359 | Zbl
[19] One hundred years of the Painlevé equations, Sūgaku, Volume 51 (1999), pp. 395-420 (in Japanese)
[20] Special polynomials associated with the Painlevé equations I, Ann. Fac. Sci. Toulouse, Math., Volume 29 (2020) no. 5, pp. 1063-1089 Workshop on the Painlevé equations (Montreal, Canada, 1996)
[21] Determinant formula for Umemura polynomials, 2004 (Master’s thesis, Kobe University, in Japanese)
Cited by Sources: