Dans cet article, nous montrons que la « propriété étendue de Courant » est fausse pour certains domaines convexes lisses avec condition au bord de Neumann : il existe une combinaison linéaire d’une première et d’une seconde fonctions propres de Neumann ayant trois domaines nodaux. Pour la démonstration, nous reformulons un argument de Jerison et Nadirashvili (J. Am. Math. Soc. 13 (2000)). Cet argument étant intéressant en lui-même, nous détaillons la preuve. En particulier, nous explicitons la dépendance des constantes par rapport à la géométrie des domaines lipschitziens le long des déformations.
In this paper, we prove that the Extended Courant Property fails to be true for certain smooth, strictly convex domains with Neumann boundary condition: there exists a linear combination of a second and a first Neumann eigenfunctions, with three nodal domains. For the proof, we revisit a deformation argument of Jerison and Nadirashvili (J. Am. Math. Soc. 13 (2000)). This argument being interesting in itself, we give full details. In particular, we carefully control the dependence of the constants on the geometry of our Lipschitz domains along the deformations.
Accepté le :
Publié le :
Mots clés : Eigenfunction, Nodal domain, Courant nodal domain theorem
@article{AFST_2021_6_30_3_429_0, author = {B\'erard, Pierre and Helffer, Bernard}, title = {Level sets of certain {Neumann} eigenfunctions under deformation of {Lipschitz} domains {Application} to the {Extended} {Courant} {Property}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {429--462}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {3}, year = {2021}, doi = {10.5802/afst.1680}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1680/} }
TY - JOUR AU - Bérard, Pierre AU - Helffer, Bernard TI - Level sets of certain Neumann eigenfunctions under deformation of Lipschitz domains Application to the Extended Courant Property JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 429 EP - 462 VL - 30 IS - 3 PB - Université Paul Sabatier, Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1680/ DO - 10.5802/afst.1680 LA - en ID - AFST_2021_6_30_3_429_0 ER -
%0 Journal Article %A Bérard, Pierre %A Helffer, Bernard %T Level sets of certain Neumann eigenfunctions under deformation of Lipschitz domains Application to the Extended Courant Property %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 429-462 %V 30 %N 3 %I Université Paul Sabatier, Toulouse %U http://archive.numdam.org/articles/10.5802/afst.1680/ %R 10.5802/afst.1680 %G en %F AFST_2021_6_30_3_429_0
Bérard, Pierre; Helffer, Bernard. Level sets of certain Neumann eigenfunctions under deformation of Lipschitz domains Application to the Extended Courant Property. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 30 (2021) no. 3, pp. 429-462. doi : 10.5802/afst.1680. http://archive.numdam.org/articles/10.5802/afst.1680/
[1] Sobolev spaces, Pure and Applied Mathematics, 65, Academic Press Inc., 1975, xviii+268 pages | MR | Zbl
[2] Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 142-154 | DOI | MR | Zbl
[3] The topology of real algebraic curves (the works of Petrovskii and their development), Usp. Mat. Nauk, Volume 28 (1973) no. 5, pp. 260-262 (Russian, translated in [5])
[4] Topological properties of eigenoscillations in mathematical physics, Proc. Steklov Inst. Math., Volume 273 (2011), pp. 25-34 | DOI | MR
[5] Topology of real algebraic curves (works of I.G. Petrovskii and their development), Collected works, Volume II. Hydrodynamics, Bifurcation theory and Algebraic geometry (Givental, Alexander B.; Khesin, Boris A.; Varchenko, Alexander N.; Vassilev, Victor A.; Viro, Oleg Ya., eds.), Springer, 2014, pp. 251-254 (Translated from [3] by Oleg Viro) | DOI
[6] Non-boundedness of the number of super level domains of eigenfunctions (2020) (https://arxiv.org/abs/1906.03668, to appear in J. Anal. Math.)
[7] Edited extracts from Antonie Stern’s thesis, Sémin. Théor. Spectr. Géom. (2015) no. 32, pp. 39-72 | Numdam | Zbl
[8] Nodal sets of eigenfunctions, Antonie Stern’s results revisited, Sémin. Théor. Spectr. Géom. (2015) no. 32, pp. 1-37 | Numdam | Zbl
[9] Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle, Lett. Math. Phys., Volume 106 (2016) no. 12, pp. 1729-1789 | DOI | MR | Zbl
[10] On Courant’s nodal domain property for linear combinations of eigenfunctions. Part I, Doc. Math., Volume 23 (2018), pp. 1561-1585 | MR | Zbl
[11] Sturm’s theorem on zeros of linear combinations of eigenfunctions, Expo. Math., Volume 38 (2020) no. 1, pp. 27-50 | DOI | MR | Zbl
[12] On Courant’s nodal domain property for linear combinations of eigenfunctions, Part II, Schrödinger Operators, Spectral Analysis and Number Theory (Springer Proceedings in Mathematics & Statistics), Volume 348, Springer, 2021, pp. 47-88 | DOI | MR | Zbl
[13] Eigenfunctions with infinitely many isolated critical points, Int. Math. Res. Not., Volume 2020 (2020) no. 24, pp. 10100-10113 | DOI | MR | Zbl
[14] Convexity of solutions of semilinear elliptic equations, Duke Math. J., Volume 52 (1985) no. 2, pp. 431-456 | MR | Zbl
[15] Eigenfunctions and nodal sets, Comment. Math. Helv., Volume 51 (1976) no. 1, pp. 43-55 | DOI | MR | Zbl
[16] Methods of mathematical physics. Vol. I, Interscience Publishers, 1953, xv+561 pages | Zbl
[17] Convexity, Cambridge Tracts in Mathematics and Mathematical Physics, 47, Cambridge University Press, 1958, viii+136 pages | Zbl
[18] Oscillation matrices and kernels and small vibrations of mechanical systems, AMS Chelsea Publishing, 2002, viii+310 pages (Translation based on the 1941 Russian original, Edited and with a preface by Alex Eremenko)
[19] The Courant–Herrmann conjecture, Z. Angew. Math. Mech, Volume 83 (2003) no. 4, pp. 275-281 | DOI | MR | Zbl
[20] Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, 1985, xiv+410 pages | MR | Zbl
[21] The topology of real projective algebraic varieties, Usp. Mat. Nauk, Volume 29 (1974) no. 4, pp. 3-79 (Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ, II) | MR | Zbl
[22] Nodal domains and spectral minimal partitions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 1, pp. 101-138 | DOI | Numdam | MR
[23] Nodal domains in the square – the Neumann case, Mosc. Math. J., Volume 15 (2015) no. 3, pp. 455-495 | DOI | MR | Zbl
[24] On the semi-classical analysis of the ground state energy of the Dirichlet Pauli operator, J. Math. Anal. Appl., Volume 449 (2017) no. 1, pp. 138-153 | DOI | MR | Zbl
[25] Variation et optimisation de formes. Une analyse géométrique, Mathématiques & Applications (Berlin), 48, Springer, 2005, xii+334 pages | Zbl
[26] Bounds on the multiplicity of eigenvalues for fixed membranes, Geom. Funct. Anal., Volume 9 (1999) no. 6, pp. 1169-1188 | DOI | MR | Zbl
[27] The “hot spots” conjecture for domains with two axes of symmetry, J. Am. Math. Soc., Volume 13 (2000) no. 4, pp. 741-772 | DOI | MR | Zbl
[28] When are superharmonic functions concave? Applications to the St. Venant torsion problem and to the fundamental mode of the clamped membrane, Z. Angew. Math. Mech, Volume 64 (1984) no. 5, pp. 364-366 | MR | Zbl
[29] A toy Neumann analogue of the nodal line conjecture, Arch. Math., Volume 110 (2018) no. 3, pp. 261-271 | DOI | MR | Zbl
[30] Power concavity and boundary value problems, Indiana Univ. Math. J., Volume 34 (1985) no. 3, pp. 687-704 | DOI | MR | Zbl
[31] On delusive nodal sets of free oscillations, Eur. Math. Soc. Newsl., Volume 96 (2015), pp. 34-40 | MR | Zbl
[32] Triangles and other special domains, Shape optimization and spectral theory, Walter de Gruyter, 2017, pp. 149-200 | DOI | Zbl
[33] Inequalities between Dirichlet and Neumann eigenvalues, Arch. Ration. Mech. Anal., Volume 94 (1986) no. 3, pp. 193-208 | DOI | MR | Zbl
[34] On the number of nodal domains of spherical harmonics, Topology, Volume 35 (1996) no. 2, pp. 301-321 | DOI | MR | Zbl
[35] On the second eigenfunctions of the Laplacian in , Commun. Math. Phys., Volume 111 (1987) no. 2, pp. 161-166 | MR | Zbl
[36] Isoperimetric inequalities and their applications, SIAM Rev., Volume 9 (1967), pp. 453-488 | DOI | MR | Zbl
[37] Remarks on Courant’s nodal line theorem, Commun. Pure Appl. Math., Volume 9 (1956), pp. 543-550 | DOI | MR | Zbl
[38] Remarks on the foregoing paper, J. Math. Phys., Volume 31 (1952), pp. 55-57 | DOI | MR | Zbl
[39] Regularity results for elliptic equations in Lipschitz domains, J. Funct. Anal., Volume 152 (1998) no. 1, pp. 176-201 | DOI | MR | Zbl
[40] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, Princeton University Press, 1970 no. 30, xiv+290 pages | Zbl
[41] Mémoire sur les équations différentielles linéaires du second ordre, J. Liouville (J. Math. Pures Appl. (1)), Volume 1 (1836), pp. 106-186
[42] Mémoire sur une classe d’équations à différences partielles, J. Liouville (J. Math. Pures Appl. (1)), Volume 1 (1836), pp. 373-444
[43] Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal., Volume 3 (1954), pp. 343-356 | MR | Zbl
[44] Construction of multi-component real algebraic surfaces, Sov. Math., Dokl., Volume 20 (1979) no. 5, pp. 991-995
[45] The implicit function theorem for Lipschitz functions and applications, 2008 (Master Thesis, University of Missouri)
Cité par Sources :