The random pinning model with correlated disorder given by a renewal set
Annales Henri Lebesgue, Volume 2 (2019), pp. 281-329.

We investigate the effect of correlated disorder on the localization transition undergone by a renewal sequence with loop exponent α>0, when the correlated sequence is given by another independent renewal set with loop exponent α ^>0. Using the renewal structure of the disorder sequence, we compute the annealed critical point and exponent. Then, using a smoothing inequality for the quenched free energy and second moment estimates for the quenched partition function, combined with decoupling inequalities, we prove that in the case α ^>2 (summable correlations), disorder is irrelevant if α<1/2 and relevant if α>1/2, which extends the Harris criterion for independent disorder. The case α ^(1,2) (non-summable correlations) remains largely open, but we are able to prove that disorder is relevant for α>1/α ^, a condition that is expected to be non-optimal. Predictions on the criterion for disorder relevance in this case are discussed. Finally, the case α ^(0,1) is somewhat special but treated for completeness: in this case, disorder has no effect on the quenched free energy, but the annealed model exhibits a phase transition.

Nous étudions l’effet d’un désordre corrélé sur la transition d’accrochage pour une suite de renouvellement d’exposant α>0, lorsque celui-ci est donné par une suite de renouvellement d’exposant α ^>0 indépendante de la première. En utilisant la structure de renouvellement du désordre, nous calculons le point et l’exposant critiques annealed. Puis, à l’aide d’une inégalité de lissage et d’estimations sur le deuxième moment de la fonction de partition quenched, ainsi que des inégalités de découplage, nous prouvons que dans le cas α ^>2 (corrélations sommables) le désordre est non-pertinent pour α<1/2 et pertinent si α>1/2, ce qui étend le critère de Harris pour un désordre sans corrélation. Le cas α ^(1,2) (corrélations non sommables) reste en grande partie ouvert, même si nous prouvons que dans ce cas le désordre est pertinent pour α>1/α ^, une condition que l’on suppose non optimale. Nous donnons des prédictions quant au critère précis de pertinence. Enfin, nous traitons le cas α ^(0,1), bien que particulier, pour compléter l’étude : dans ce cas-là, le désordre n’a aucun effet sur l’énergie libre quenched, mais le modèle annealed présente une transition de phase.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/ahl.11
Classification: 82B44,  82B27,  82D60,  60K05,  60K35
Keywords: Pinning model, localization transition, free energy, correlated disorder, renewal, disorder relevance, Harris criterion, smoothing inequality, second moment.
Cheliotis, Dimitris 1; Chino, Yuki 2; Poisat, Julien 3

1 National and Kapodistrian University of Athens Department of Mathematics Panepistimiopolis 15784 Athens (Greece)
2 Mathematical Institute Leiden University P.O. Box 9512 2300 RA Leiden (The Netherlands)
3 CEREMADE, CNRS Université Paris-Dauphine, Université PSL 75016 Paris (France)
@article{AHL_2019__2__281_0,
     author = {Cheliotis, Dimitris and Chino, Yuki and Poisat, Julien},
     title = {The random pinning model with correlated disorder given by a renewal set},
     journal = {Annales Henri Lebesgue},
     pages = {281--329},
     publisher = {\'ENS Rennes},
     volume = {2},
     year = {2019},
     doi = {10.5802/ahl.11},
     zbl = {07099980},
     mrnumber = {3978390},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ahl.11/}
}
TY  - JOUR
AU  - Cheliotis, Dimitris
AU  - Chino, Yuki
AU  - Poisat, Julien
TI  - The random pinning model with correlated disorder given by a renewal set
JO  - Annales Henri Lebesgue
PY  - 2019
DA  - 2019///
SP  - 281
EP  - 329
VL  - 2
PB  - ÉNS Rennes
UR  - http://archive.numdam.org/articles/10.5802/ahl.11/
UR  - https://zbmath.org/?q=an%3A07099980
UR  - https://www.ams.org/mathscinet-getitem?mr=3978390
UR  - https://doi.org/10.5802/ahl.11
DO  - 10.5802/ahl.11
LA  - en
ID  - AHL_2019__2__281_0
ER  - 
%0 Journal Article
%A Cheliotis, Dimitris
%A Chino, Yuki
%A Poisat, Julien
%T The random pinning model with correlated disorder given by a renewal set
%J Annales Henri Lebesgue
%D 2019
%P 281-329
%V 2
%I ÉNS Rennes
%U https://doi.org/10.5802/ahl.11
%R 10.5802/ahl.11
%G en
%F AHL_2019__2__281_0
Cheliotis, Dimitris; Chino, Yuki; Poisat, Julien. The random pinning model with correlated disorder given by a renewal set. Annales Henri Lebesgue, Volume 2 (2019), pp. 281-329. doi : 10.5802/ahl.11. http://archive.numdam.org/articles/10.5802/ahl.11/

[AB18] Alexander, Kenneth S.; Berger, Quentin Pinning of a renewal on a quenched renewal, Electron. J. Probab., Volume 23 (2018), 6, 48 pages | MR | Zbl

[AS06] Alexander, Kenneth S.; Sidoravicius, Vladas Pinning of polymers and interfaces by random potentials, Ann. Appl. Probab., Volume 16 (2006) no. 2, pp. 636-669 | DOI | MR | Zbl

[Asm03] Asmussen, Søren Applied probability and queues, Applications of Mathematics, 51, Springer, 2003, xii+438 pages | MR | Zbl

[AZ09] Alexander, Kenneth S.; Zygouras, Nikos Quenched and annealed critical points in polymer pinning models, Commun. Math. Phys., Volume 291 (2009) no. 3, pp. 659-689 | DOI | MR | Zbl

[BCP + 14] Berger, Quentin; Caravenna, Francesco; Poisat, Julien; Sun, Rongfeng; Zygouras, Nikos The critical curve of the random pinning and copolymer models at weak coupling, Commun. Math. Phys., Volume 326 (2014) no. 2, pp. 507-530 | DOI | MR | Zbl

[Ber13] Berger, Quentin Comments on the influence of disorder for pinning model in correlated Gaussian environment, ALEA, Lat. Am. J. Probab. Math. Stat., Volume 10 (2013) no. 2, pp. 953-977 | MR | Zbl

[Ber14] Berger, Quentin Pinning model in random correlated environment: appearance of an infinite disorder regime, J. Stat. Phys., Volume 155 (2014) no. 3, pp. 544-570 | DOI | MR | Zbl

[BGT89] Bingham, Nicholas H.; Goldie, Charles M.; Teugels, Jozef L. Regular variation, Encyclopedia of Mathematics and Its Applications, 27, Cambridge University Press, 1989, 512 pages | MR | Zbl

[BL12] Berger, Quentin; Lacoin, Hubert Sharp critical behavior for pinning models in a random correlated environment, Stochastic Processes Appl., Volume 122 (2012) no. 4, pp. 1397-1436 | DOI | MR | Zbl

[BL16] Berger, Quentin; Lacoin, Hubert Pinning on a defect line: characterization of marginal disorder relevance and sharp asymptotics for the critical point shift, J. Inst. Math. Jussieu, Volume 17 (2016) no. 2, pp. 205-346 | MR | Zbl

[BP15] Berger, Quentin; Poisat, Julien On the critical curve of the pinning and copolymer models in correlated Gaussian environment, Electron. J. Probab., Volume 20 (2015), 71, 35 pages | DOI | MR | Zbl

[CdH13a] Caravenna, Francesco; den Hollander, Frank A general smoothing inequality for disordered polymers, Electron. Commun. Probab., Volume 18 (2013), 76, 15 pages | MR | Zbl

[CdH13b] Cheliotis, Dimitris; den Hollander, Frank Variational characterization of the critical curve for pinning of random polymers, Ann. Probab., Volume 41 (2013) no. 3B, pp. 1767-1805 | DOI | MR | Zbl

[CSZ16] Caravenna, Francesco; Sun, Rongfeng; Zygouras, Nikos The continuum disordered pinning model, Probab. Theory Relat. Fields, Volume 164 (2016) no. 1-2, pp. 17-59 | DOI | MR | Zbl

[CSZ17] Caravenna, Francesco; Sun, Rongfeng; Zygouras, Nikos Polynomial chaos and scaling limits of disordered systems, J. Eur. Math. Soc., Volume 19 (2017) no. 1, pp. 1-65 | DOI | MR | Zbl

[CTT17] Caravenna, Francesco; Toninelli, Fabio Lucio; Torri, Niccoló Universality for the pinning model in the weak coupling regime, Ann. Probab., Volume 45 (2017) no. 4, pp. 2154-2209 | DOI | MR | Zbl

[DGLT09] Derrida, Bernard; Giacomin, Giambattista; Lacoin, Hubert; Toninelli, Fabio Lucio Fractional moment bounds and disorder relevance for pinning models, Commun. Math. Phys., Volume 287 (2009) no. 3, pp. 867-887 | DOI | MR | Zbl

[dH09] den Hollander, Frank Random Polymer models: École d’Été de Probabilités de Saint-Flour XXXVII-2007, Lecture Notes in Mathematics, 1974, Springer, 2009, xiii+258 pages | Zbl

[Dur10] Durrett, Rick Probability: Theory and examples, Cambridge Series in Statistical and Probabilistic Mathematics, 31, Cambridge University Press, 2010 | MR | Zbl

[Fel68] Feller, William An introduction to probability and its applications. Vol. 1, John Wiley & Sons, 1968, xviii+509 pages | Zbl

[Fel71] Feller, William An introduction to probability and its applications. Vol. 2, John Wiley & Sons, 1971, xxiv+669 pages | Zbl

[Fre82] Frenk, Johannes B. G. The behaviour of the renewal sequence in case the tail of the waiting-time distribution is regularly varying with index -1, Adv. Appl. Probab., Volume 14 (1982) no. 4, pp. 870-874 | DOI | Zbl

[GHM99] Georgii, Hans-Otto; Häggström, Olle; Maes, Christian The random geometry of equilibrium phases (Phase transitions and critical phenomena), Volume 18, Academic Press Inc., 1999, pp. 1-142 | DOI

[Gia07] Giacomin, Giambattista Random polymer models, World Scientific, 2007, xvi+242 pages | Zbl

[Gia11] Giacomin, Giambattista Disorder and Critical Phenomena Through Basic Probability Models. École d’Été de Probabilités de Saint-Flour XL-2010, Lecture Notes in Mathematics, 2025, Springer, 2011, xi+130 pages | MR | Zbl

[GL62] Garsia, Adriano; Lamperti, John A discrete renewal theorem with infinite mean, Comment. Math. Helv., Volume 37 (1962), pp. 221-234 | DOI | MR | Zbl

[GT06] Giacomin, Giambattista; Toninelli, Fabio Lucio Smoothing effect of quenched disorder on polymer depinning transitions, Commun. Math. Phys., Volume 266 (2006) no. 1, pp. 1-16 | DOI | MR | Zbl

[GTL10] Giacomin, Giambattista; Toninelli, Fabio Lucio; Lacoin, Hubert Marginal relevance of disorder for pinning models, Commun. Pure Appl. Math., Volume 63 (2010) no. 2, pp. 233-265 | DOI | MR | Zbl

[Har74] Harris, A. B. Effect of random defects on the critical behaviour of Ising model, J. Phys. C, Solid State Phys., Volume 7 (1974) no. 9, pp. 1671-1692 | DOI

[JPS06] Jeon, Jae-Hyung; Park, Pyeong Jun; Sung, Wokyung The effect of sequence correlation on bubble statistics in double-stranded DNA, J. Chem. Phys., Volume 125 (2006), 164901 | DOI

[Lac10] Lacoin, Hubert The martingale approach to disorder irrelevance for pinning models, Electron. Commun. Probab., Volume 15 (2010), pp. 418-427 | DOI | MR | Zbl

[LS17] Lacoin, Hubert; Sohier, Julien Disorder relevance without Harris Criterion: the case of pinning model with γ-stable environment, Electron. J. Probab., Volume 22 (2017), 50, 26 pages | MR | Zbl

[Nag12] Nagaev, Sergey V. The renewal theorem in the absence of power moments, Theory Probab. Appl., Volume 56 (2012) no. 1, pp. 166-175 | DOI | Zbl

[Poi13a] Poisat, Julien On quenched and annealed critical curves of random pinning model with finite range correlations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 49 (2013), pp. 456-482 | DOI | Numdam | MR | Zbl

[Poi13b] Poisat, Julien Ruelle-Perron-Frobenius operator approach to the annealed pinning model with Gaussian long-range correlated disorder, Markov Process. Relat. Fields, Volume 19 (2013) no. 3, pp. 577-606 | MR | Zbl

[Spi13] Spitzer, Frank Principles of random walk, Graduate Texts in Mathematics, 34, Springer, 2013 | Zbl

[ST94] Samorodnitsky, Gennady; Taqqu, Murad S. Stable non-Gaussian random processes, Stochastic Modeling, Chapman & Hall, 1994, xviii+632 pages | Zbl

[Ton08] Toninelli, Fabio Lucio A replica-coupling approach to disordered pinning models, Commun. Math. Phys., Volume 280 (2008) no. 2, pp. 389-401 | DOI | MR | Zbl

[WH83] Weinrib, Abel; Halperin, Bertrand I. Critical phenomena in systems with long-range-correlated disorder, Phys. Rev. B, Volume 27 (1983), pp. 413-427 | DOI

Cited by Sources: