Self-representations of the Möbius group
[Auto-représentations du groupe de Möbius]
Annales Henri Lebesgue, Tome 2 (2019), pp. 259-280.

Contrairement au cas usuel de dimension finie, le groupe de Möbius admet des auto-représentations intéressantes lorsqu’il est de dimension infinie. Nous les construisons et classifions toutes.

Les démonstrations sont conduites dans le cadre équivalent des groupes d’isométries des espaces de Lobatchevski et reposent sur le concept de noyau de type hyperbolique, en analogie avec la notion classique de noyau de type positif ou négatif.

Contrary to the finite-dimensional case, the Möbius group admits interesting self-representations when infinite-dimensional. We construct and classify all these self-representations.

The proofs are obtained in the equivalent setting of isometries of Lobachevsky spaces and use kernels of hyperbolic type, in analogy with the classical concepts of kernels of positive and negative type.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : https://doi.org/10.5802/ahl.14
Classification : 53A35,  57S25,  53C50
Mots clés : Möbius group, Lobatchevsky space, hyperbolic space, infinite-dimensional space
@article{AHL_2019__2__259_0,
     author = {Monod, Nicolas and Py, Pierre},
     title = {Self-representations of the {M\"obius} group},
     journal = {Annales Henri Lebesgue},
     pages = {259--280},
     publisher = {\'ENS Rennes},
     volume = {2},
     year = {2019},
     doi = {10.5802/ahl.14},
     zbl = {1428.58008},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ahl.14/}
}
TY  - JOUR
AU  - Monod, Nicolas
AU  - Py, Pierre
TI  - Self-representations of the Möbius group
JO  - Annales Henri Lebesgue
PY  - 2019
DA  - 2019///
SP  - 259
EP  - 280
VL  - 2
PB  - ÉNS Rennes
UR  - http://archive.numdam.org/articles/10.5802/ahl.14/
UR  - https://zbmath.org/?q=an%3A1428.58008
UR  - https://doi.org/10.5802/ahl.14
DO  - 10.5802/ahl.14
LA  - en
ID  - AHL_2019__2__259_0
ER  - 
Monod, Nicolas; Py, Pierre. Self-representations of the Möbius group. Annales Henri Lebesgue, Tome 2 (2019), pp. 259-280. doi : 10.5802/ahl.14. http://archive.numdam.org/articles/10.5802/ahl.14/

[BdlHV08] Bekka, Bachir; de la Harpe, Pierre; Valette, Alain Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008, xiv+472 pages | MR 2415834 | Zbl 1146.22009

[Bek03] Bekka, Bachir Kazhdan’s property (T) for the unitary group of a separable Hilbert space, Geom. Funct. Anal., Volume 13 (2003) no. 3, pp. 509-520 | Article | MR 1995797 | Zbl 1028.43006

[BGS85] Ballmann, Werner; Gromov, Mikhail; Schroeder, Viktor Manifolds of nonpositive curvature, Progress in Mathematics, 61, Birkhäuser, 1985, vi+263 pages | MR 823981 | Zbl 0591.53001

[BH99] Bridson, Martin Robert; Haefliger, André Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | MR 1744486 | Zbl 0988.53001

[BIM05] Burger, Marc; Iozzi, Alessandra; Monod, Nicolas Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not. (2005) no. 22, pp. 1331-1369 | Article | MR 2152540 | Zbl 1077.22005

[Can11] Cantat, Serge Sur les groupes de transformations birationnelles des surfaces, Ann. Math., Volume 174 (2011) no. 1, pp. 299-340 | Article | MR 2811600 | Zbl 1233.14011

[Gan66] Gans, David A new model of the hyperbolic plane, Am. Math. Mon., Volume 73 (1966) no. 3, pp. 291-295 | Article | MR 1533696 | Zbl 0136.15101

[Gro01] Gromov, Mikhail CAT (κ)-spaces: construction and concentration, Zap. Nauchn. Semin. (POMI), Volume 280 (2001), pp. 101-140 | Zbl 1089.53029

[Kes51] Kestelman, Hyman Automorphisms of the field of complex numbers, Proc. Lond. Math. Soc., Volume 53 (1951), pp. 1-12 | Article | MR 41206 | Zbl 0042.39304

[Leb07] Lebesgue, Henri Sur les transformations ponctuelles, transformant les plans en plans, qu’on peut définir par des procédés analytiques (Existrait d’une lettre adressée à M. C. Segre), Torino Atti, Volume 42 (1907), pp. 532-539 | Zbl 38.0096.05

[Man86] Manin, Yuri Cubic forms. Algebra, geometry, arithmetic, North-Holland Mathematical Library, 4, North-Holland Publishing Co., Amsterdam, 1986, x+326 pages (translated from the Russian by M. Hazewinkel)

[Mon18] Monod, Nicolas Notes on functions of hyperbolic type (2018) (https://arxiv.org/abs/1807.04157v1)

[MP14] Monod, Nicolas; Py, Pierre An exotic deformation of the hyperbolic space, Am. J. Math., Volume 136 (2014) no. 5, pp. 1249-1299 | Article | MR 3263898 | Zbl 1304.53030

[Res89] Reshetnyak, Yurii G. Space mappings with bounded distortion, Translations of Mathematical Monographs, 73, American Mathematical Society, 1989, xvi+362 pages (translated from the Russian by H. H. McFaden) | MR 994644 | Zbl 0667.30018

[RR07] Ricard, Éric; Rosendal, Christian On the algebraic structure of the unitary group, Collect. Math., Volume 58 (2007) no. 2, pp. 181-192 | MR 2332091 | Zbl 1129.22012

[SSV12] Schilling, René L.; Song, Renming; Vondraček, Zoran Bernstein functions. Theory and applications, De Gruyter Studies in Mathematics, 37, Walter de Gruyter, 2012, xiv+410 pages | Zbl 1257.33001

[Tsa13] Tsankov, Todor Automatic continuity for the unitary group, Proc. Am. Math. Soc., Volume 141 (2013) no. 10, pp. 3673-3680 | Article | MR 3080189 | Zbl 1281.54010

Cité par Sources :