Degenerations of SL(2,) representations and Lyapunov exponents
[Dégénerescences de représentations dans SL(2,) et exposants de Lyapunov]
Annales Henri Lebesgue, Tome 2 (2019), pp. 515-565.

Nous étudions le comportement asymptotique de l’exposant de Lyapunov dans une famille méromorphe de produits aléatoires de matrices dans SL(2,), lorsque le paramètre tend vers un pôle. Nous montrons que la divergence de l’exposant de Lyapunov est régie par une quantité qui peut être interprétée comme un exposant de Lyapunov non-archimédien. Nous décrivons également la limite de la famille correspondante de mesures stationnaires sur 1 ().

We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in SL(2,), as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can be interpreted as the non-Archimedean Lyapunov exponent of the family. We also describe the limit of the corresponding family of stationary measures on 1 ().

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/ahl.24
Classification : 37H15, 37P50, 60B20, 60B15, 37F30
Dujardin, Romain 1 ; Favre, Charles 2

1 Sorbonne Universités, Laboratoire de probabilités, statistique et modélisation (LPSM) 4 place Jussieu 75005 Paris (France)
2 CNRS - Centre de Mathématiques Laurent Schwartz, École Polytechnique 91128 Palaiseau Cedex (France)
@article{AHL_2019__2__515_0,
     author = {Dujardin, Romain and Favre, Charles},
     title = {Degenerations of $\protect \mathrm{SL}(2, \protect \mathbb{C})$ representations and {Lyapunov} exponents},
     journal = {Annales Henri Lebesgue},
     pages = {515--565},
     publisher = {\'ENS Rennes},
     volume = {2},
     year = {2019},
     doi = {10.5802/ahl.24},
     mrnumber = {4015916},
     zbl = {07106527},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ahl.24/}
}
TY  - JOUR
AU  - Dujardin, Romain
AU  - Favre, Charles
TI  - Degenerations of $\protect \mathrm{SL}(2, \protect \mathbb{C})$ representations and Lyapunov exponents
JO  - Annales Henri Lebesgue
PY  - 2019
SP  - 515
EP  - 565
VL  - 2
PB  - ÉNS Rennes
UR  - http://archive.numdam.org/articles/10.5802/ahl.24/
DO  - 10.5802/ahl.24
LA  - en
ID  - AHL_2019__2__515_0
ER  - 
%0 Journal Article
%A Dujardin, Romain
%A Favre, Charles
%T Degenerations of $\protect \mathrm{SL}(2, \protect \mathbb{C})$ representations and Lyapunov exponents
%J Annales Henri Lebesgue
%D 2019
%P 515-565
%V 2
%I ÉNS Rennes
%U http://archive.numdam.org/articles/10.5802/ahl.24/
%R 10.5802/ahl.24
%G en
%F AHL_2019__2__515_0
Dujardin, Romain; Favre, Charles. Degenerations of $\protect \mathrm{SL}(2, \protect \mathbb{C})$ representations and Lyapunov exponents. Annales Henri Lebesgue, Tome 2 (2019), pp. 515-565. doi : 10.5802/ahl.24. http://archive.numdam.org/articles/10.5802/ahl.24/

[ACS83] Avron, Joseph; Craig, Walter; Simon, Barry Large coupling behaviour of the Lyapunov exponent for tight binding one-dimensional random systems, J. Phys. A, Math. Gen., Volume 16 (1983) no. 7, pp. 209-211 | DOI | MR | Zbl

[Alp87] Alperin, Roger C. An elementary account of Selberg’s lemma, Enseign. Math., Volume 33 (1987) no. 3-4, pp. 269-273 | MR | Zbl

[Bea95] Beardon, Alan F. The geometry of discrete groups, Graduate Texts in Mathematics, 91, Springer, 1995, xii+337 pages (Corrected reprint of the 1983 original) | MR

[Ber90] Berkovich, Vladimir G. Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990, x+169 pages | MR | Zbl

[Ber09] Berkovich, Vladimir G. A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progress in Mathematics), Volume 269, Birkhäuser, 2009, pp. 49-67 | DOI | MR | Zbl

[BJ17] Boucksom, Sébastien; Jonsson, Mattias Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. Polytech., Math., Volume 4 (2017), pp. 87-139 | DOI | Numdam | MR | Zbl

[BL85] Bougerol, Philippe; Lacroix, Jean Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, 8, Birkhäuser, 1985, xii+283 pages | DOI | MR | Zbl

[BNV17] Bocker-Neto, Carlos; Viana, Marcelo Continuity of Lyapunov exponents for random two-dimensional matrices, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 5, pp. 1413-1442 | DOI | MR | Zbl

[BR10] Baker, Matthew; Rumely, Robert Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010, xxxiv+428 pages | DOI | MR | Zbl

[CM87] Culler, Marc; Morgan, John W. Group actions on R-trees, Proc. Lond. Math. Soc., Volume 55 (1987) no. 3, pp. 571-604 | DOI | MR | Zbl

[CS83] Culler, Marc; Shalen, Peter B. Varieties of group representations and splittings of 3-manifolds, Ann. Math., Volume 117 (1983) no. 1, pp. 109-146 | DOI | MR | Zbl

[DD12] Deroin, Bertrand; Dujardin, Romain Random walks, Kleinian groups, and bifurcation currents, Invent. Math., Volume 190 (2012) no. 1, pp. 57-118 | DOI | MR | Zbl

[DD15] Deroin, Bertrand; Dujardin, Romain Lyapunov exponents for surface group representations, Commun. Math. Phys., Volume 340 (2015) no. 2, pp. 433-469 | DOI | MR | Zbl

[DeM03] DeMarco, Laura Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003) no. 1, pp. 43-73 | DOI | MR | Zbl

[DeM16] DeMarco, Laura Bifurcations, intersections, and heights, Algebra Number Theory, Volume 10 (2016) no. 5, pp. 1031-1056 | DOI | MR | Zbl

[DF16] DeMarco, Laura; Faber, Xander Degenerations of complex dynamical systems II: analytic and algebraic stability, Math. Ann., Volume 365 (2016) no. 3-4, pp. 1669-1699 (With an appendix by Jan Kiwi) | DOI | MR | Zbl

[DMF14] De Marco, Laura; Faber, Xander Degenerations of complex dynamical systems, Forum Math. Sigma, Volume 2 (2014), e6, 36 pages | DOI | MR | Zbl

[Fan18] Fantini, Lorenzo Normalized Berkovich spaces and surface singularities, Trans. Am. Math. Soc., Volume 370 (2018) no. 11, pp. 7815-7859 | DOI | MR | Zbl

[Fav19] Favre, Charles Degeneration of endomorphisms of the complex projective space in the hybrid space. (2019) (to appear in J. Inst. Math. Jussieu) | DOI

[FJ04] Favre, Charles; Jonsson, Mattias The valuative tree, Lecture Notes in Mathematics, 1853, Springer, 2004, xiv+234 pages | DOI | MR | Zbl

[FK83] Furstenberg, Harry; Kifer, Yuri Random matrix products and measures on projective spaces, Isr. J. Math., Volume 46 (1983) no. 1-2, pp. 12-32 | DOI | MR | Zbl

[Fur63] Furstenberg, Harry Noncommuting random products, Trans. Am. Math. Soc., Volume 108 (1963), pp. 377-428 | DOI | MR | Zbl

[Fur02] Furman, Alex Random walks on groups and random transformations, Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, pp. 931-1014 | DOI | MR | Zbl

[GR85] Guivarc’h, Yves; Raugi, Albert Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 69 (1985) no. 2, pp. 187-242 | DOI | MR | Zbl

[Gui90] Guivarc’h, Yves Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dyn. Syst., Volume 10 (1990) no. 3, pp. 483-512 | DOI | MR | Zbl

[Jon15] Jonsson, Mattias Dynamics of Berkovich spaces in low dimensions, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 205-366 | DOI | MR | Zbl

[Kap09] Kapovich, Michael Hyperbolic manifolds and discrete groups, Modern Birkhäuser Classics, Birkhäuser, 2009, xxviii+467 pages (Reprint of the 2001 edition) | DOI | MR | Zbl

[LP89] Le Page, Émile Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 25 (1989) no. 2, pp. 109-142 | Numdam | MR | Zbl

[MT18] Maher, Joseph; Tiozzo, Giulio Random walks on weakly hyperbolic groups, J. Reine Angew. Math., Volume 742 (2018), pp. 187-239 | DOI | MR | Zbl

[Ota15] Otal, Jean-Pierre Compactification of spaces of representations after Culler, Morgan and Shalen, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 367-413 | DOI | MR | Zbl

[Poi13] Poineau, Jérôme Les espaces de Berkovich sont angéliques, Bull. Soc. Math. Fr., Volume 141 (2013) no. 2, pp. 267-297 | DOI | Numdam | MR | Zbl

[Tem15] Temkin, Michael Introduction to Berkovich analytic spaces, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 3-66 | DOI | MR | Zbl

[YW15] Yang, Jinghua; Wang, Yuefei On p-adic Möbius maps (2015) (https://arxiv.org/abs/1512.01305)

Cité par Sources :