Nous étudions le comportement asymptotique de l’exposant de Lyapunov dans une famille méromorphe de produits aléatoires de matrices dans , lorsque le paramètre tend vers un pôle. Nous montrons que la divergence de l’exposant de Lyapunov est régie par une quantité qui peut être interprétée comme un exposant de Lyapunov non-archimédien. Nous décrivons également la limite de la famille correspondante de mesures stationnaires sur .
We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in , as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can be interpreted as the non-Archimedean Lyapunov exponent of the family. We also describe the limit of the corresponding family of stationary measures on .
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/ahl.24
@article{AHL_2019__2__515_0, author = {Dujardin, Romain and Favre, Charles}, title = {Degenerations of $\protect \mathrm{SL}(2, \protect \mathbb{C})$ representations and {Lyapunov} exponents}, journal = {Annales Henri Lebesgue}, pages = {515--565}, publisher = {\'ENS Rennes}, volume = {2}, year = {2019}, doi = {10.5802/ahl.24}, mrnumber = {4015916}, zbl = {07106527}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.24/} }
TY - JOUR AU - Dujardin, Romain AU - Favre, Charles TI - Degenerations of $\protect \mathrm{SL}(2, \protect \mathbb{C})$ representations and Lyapunov exponents JO - Annales Henri Lebesgue PY - 2019 SP - 515 EP - 565 VL - 2 PB - ÉNS Rennes UR - http://archive.numdam.org/articles/10.5802/ahl.24/ DO - 10.5802/ahl.24 LA - en ID - AHL_2019__2__515_0 ER -
%0 Journal Article %A Dujardin, Romain %A Favre, Charles %T Degenerations of $\protect \mathrm{SL}(2, \protect \mathbb{C})$ representations and Lyapunov exponents %J Annales Henri Lebesgue %D 2019 %P 515-565 %V 2 %I ÉNS Rennes %U http://archive.numdam.org/articles/10.5802/ahl.24/ %R 10.5802/ahl.24 %G en %F AHL_2019__2__515_0
Dujardin, Romain; Favre, Charles. Degenerations of $\protect \mathrm{SL}(2, \protect \mathbb{C})$ representations and Lyapunov exponents. Annales Henri Lebesgue, Tome 2 (2019), pp. 515-565. doi : 10.5802/ahl.24. http://archive.numdam.org/articles/10.5802/ahl.24/
[ACS83] Large coupling behaviour of the Lyapunov exponent for tight binding one-dimensional random systems, J. Phys. A, Math. Gen., Volume 16 (1983) no. 7, pp. 209-211 | DOI | MR | Zbl
[Alp87] An elementary account of Selberg’s lemma, Enseign. Math., Volume 33 (1987) no. 3-4, pp. 269-273 | MR | Zbl
[Bea95] The geometry of discrete groups, Graduate Texts in Mathematics, 91, Springer, 1995, xii+337 pages (Corrected reprint of the 1983 original) | MR
[Ber90] Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, 33, American Mathematical Society, 1990, x+169 pages | MR | Zbl
[Ber09] A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progress in Mathematics), Volume 269, Birkhäuser, 2009, pp. 49-67 | DOI | MR | Zbl
[BJ17] Tropical and non-Archimedean limits of degenerating families of volume forms, J. Éc. Polytech., Math., Volume 4 (2017), pp. 87-139 | DOI | Numdam | MR | Zbl
[BL85] Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, 8, Birkhäuser, 1985, xii+283 pages | DOI | MR | Zbl
[BNV17] Continuity of Lyapunov exponents for random two-dimensional matrices, Ergodic Theory Dyn. Syst., Volume 37 (2017) no. 5, pp. 1413-1442 | DOI | MR | Zbl
[BR10] Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, 159, American Mathematical Society, 2010, xxxiv+428 pages | DOI | MR | Zbl
[CM87] Group actions on -trees, Proc. Lond. Math. Soc., Volume 55 (1987) no. 3, pp. 571-604 | DOI | MR | Zbl
[CS83] Varieties of group representations and splittings of -manifolds, Ann. Math., Volume 117 (1983) no. 1, pp. 109-146 | DOI | MR | Zbl
[DD12] Random walks, Kleinian groups, and bifurcation currents, Invent. Math., Volume 190 (2012) no. 1, pp. 57-118 | DOI | MR | Zbl
[DD15] Lyapunov exponents for surface group representations, Commun. Math. Phys., Volume 340 (2015) no. 2, pp. 433-469 | DOI | MR | Zbl
[DeM03] Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity, Math. Ann., Volume 326 (2003) no. 1, pp. 43-73 | DOI | MR | Zbl
[DeM16] Bifurcations, intersections, and heights, Algebra Number Theory, Volume 10 (2016) no. 5, pp. 1031-1056 | DOI | MR | Zbl
[DF16] Degenerations of complex dynamical systems II: analytic and algebraic stability, Math. Ann., Volume 365 (2016) no. 3-4, pp. 1669-1699 (With an appendix by Jan Kiwi) | DOI | MR | Zbl
[DMF14] Degenerations of complex dynamical systems, Forum Math. Sigma, Volume 2 (2014), e6, 36 pages | DOI | MR | Zbl
[Fan18] Normalized Berkovich spaces and surface singularities, Trans. Am. Math. Soc., Volume 370 (2018) no. 11, pp. 7815-7859 | DOI | MR | Zbl
[Fav19] Degeneration of endomorphisms of the complex projective space in the hybrid space. (2019) (to appear in J. Inst. Math. Jussieu) | DOI
[FJ04] The valuative tree, Lecture Notes in Mathematics, 1853, Springer, 2004, xiv+234 pages | DOI | MR | Zbl
[FK83] Random matrix products and measures on projective spaces, Isr. J. Math., Volume 46 (1983) no. 1-2, pp. 12-32 | DOI | MR | Zbl
[Fur63] Noncommuting random products, Trans. Am. Math. Soc., Volume 108 (1963), pp. 377-428 | DOI | MR | Zbl
[Fur02] Random walks on groups and random transformations, Handbook of dynamical systems, Vol. 1A, North-Holland, 2002, pp. 931-1014 | DOI | MR | Zbl
[GR85] Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 69 (1985) no. 2, pp. 187-242 | DOI | MR | Zbl
[Gui90] Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dyn. Syst., Volume 10 (1990) no. 3, pp. 483-512 | DOI | MR | Zbl
[Jon15] Dynamics of Berkovich spaces in low dimensions, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 205-366 | DOI | MR | Zbl
[Kap09] Hyperbolic manifolds and discrete groups, Modern Birkhäuser Classics, Birkhäuser, 2009, xxviii+467 pages (Reprint of the 2001 edition) | DOI | MR | Zbl
[LP89] Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 25 (1989) no. 2, pp. 109-142 | Numdam | MR | Zbl
[MT18] Random walks on weakly hyperbolic groups, J. Reine Angew. Math., Volume 742 (2018), pp. 187-239 | DOI | MR | Zbl
[Ota15] Compactification of spaces of representations after Culler, Morgan and Shalen, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 367-413 | DOI | MR | Zbl
[Poi13] Les espaces de Berkovich sont angéliques, Bull. Soc. Math. Fr., Volume 141 (2013) no. 2, pp. 267-297 | DOI | Numdam | MR | Zbl
[Tem15] Introduction to Berkovich analytic spaces, Berkovich spaces and applications (Lecture Notes in Mathematics), Volume 2119, Springer, 2015, pp. 3-66 | DOI | MR | Zbl
[YW15] On p-adic Möbius maps (2015) (https://arxiv.org/abs/1512.01305)
Cité par Sources :