We prove that the law of a random walk is determined by the one-dimensional distributions of for , as conjectured recently by Loïc Chaumont and Ron Doney. Equivalently, the law of is determined by its upward space-time Wiener–Hopf factor. Our methods are complex-analytic.
Nous démontrons que la loi d’une marche aléatoire est déterminée par les distributions de pour , comme l’avaient conjecturé récemment Loïc Chaumont et Ron Doney. De manière équivalente, la loi de est déterminée par son facteur de Wiener–Hopf espace-temps ascendant. Nos méthodes relèvent de l’analyse complexe.
Accepted:
Published online:
Keywords: Random walk, Lévy process, Wiener–Hopf factorisation, Nevanlinna class
@article{AHL_2020__3__1389_0, author = {Kwa\'snicki, Mateusz}, title = {Random walks are determined by their trace on~the positive half-line}, journal = {Annales Henri Lebesgue}, pages = {1389--1397}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.64}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.64/} }
TY - JOUR AU - Kwaśnicki, Mateusz TI - Random walks are determined by their trace on the positive half-line JO - Annales Henri Lebesgue PY - 2020 SP - 1389 EP - 1397 VL - 3 PB - ÉNS Rennes UR - http://archive.numdam.org/articles/10.5802/ahl.64/ DO - 10.5802/ahl.64 LA - en ID - AHL_2020__3__1389_0 ER -
Kwaśnicki, Mateusz. Random walks are determined by their trace on the positive half-line. Annales Henri Lebesgue, Volume 3 (2020), pp. 1389-1397. doi : 10.5802/ahl.64. http://archive.numdam.org/articles/10.5802/ahl.64/
[CD20] On distributions determined by their upward, space-time Wiener–Hopf factor, J. Theor. Probab., Volume 33 (2020) no. 2, pp. 1011-1033 | DOI | MR | Zbl
[Con73] Functions of one complex variable, Graduate Texts in Mathematics, 11, Springer, 1973 | MR | Zbl
[Gar07] Bounded Analytic Functions, Graduate Texts in Mathematics, 236, Springer, 2007 | MR
[LMS76] A note on left-continuous random walks, J. Appl. Probab., Volume 13 (1976) no. 4, pp. 814-817 | DOI | MR | Zbl
[LO77] Decomposition of random variables and vectors, Translations of Mathematical Monographs, 48, American Mathematical Society, 1977 | MR
[Mas09] Representation theorems in Hardy spaces, London Mathematical Society Student Texts, Cambridge University Press, 2009 | Zbl
[Ost85] Generalization of the Titchmarsh convolution theorem and the complex-valued measures uniquely determined by their restrictions to a half-line, Stability Problems for Stochastic Models (Uzhgorod, 1984) (Lecture Notes in Mathematics), Volume 1155, Springer, 1985, pp. 256-283 | DOI | MR | Zbl
[OU90] Probability distributions and Borel measures uniquely determined by their restrictions to a half-space, Probability theory and mathematical statistics. Vol. II (Vilnius, 1989) (Grigelionos, B.; Prohorov, Yu V.; Sazonov, V. V.; Statulevičius, V., eds.), Mokslas, 1990, pp. 278-287
[Ula90] Unique determination of the convolutions of measures in , , by their restriction to a set, J. Math. Sci., Volume 49 (1990) no. 6, pp. 1298-1301 | DOI
[Ula92] On the determination of a measure by the restriction of its -fold convolutions to a massive set, Teor. Funkts. Funkts. Anal. Prilozh., Volume 57 (1992), pp. 102-109 English translation in: J. Math. Sci. 77(1) (1995): 2997–3002
[Vig01] Simplifiez vos Lévy en titillant la factorisation de Wiener–Hopf, Ph. D. Thesis, INSA de Rouen, (France) (2001)
[You15] On removable sets for holomorphic functions, EMS Surv. Math. Sci., Volume 2 (2015) no. 2, pp. 219-254 | DOI | MR | Zbl
Cited by Sources: