Random walks are determined by their trace on the positive half-line
Annales Henri Lebesgue, Volume 3 (2020), pp. 1389-1397.

We prove that the law of a random walk X n is determined by the one-dimensional distributions of max(X n ,0) for n=1,2,..., as conjectured recently by Loïc Chaumont and Ron Doney. Equivalently, the law of X n is determined by its upward space-time Wiener–Hopf factor. Our methods are complex-analytic.

Nous démontrons que la loi d’une marche aléatoire X n est déterminée par les distributions de max(X n ,0) pour n=1,2,..., comme l’avaient conjecturé récemment Loïc Chaumont et Ron Doney. De manière équivalente, la loi de X n est déterminée par son facteur de Wiener–Hopf espace-temps ascendant. Nos méthodes relèvent de l’analyse complexe.

Received:
Accepted:
Published online:
DOI: 10.5802/ahl.64
Classification: 60G50, 60G51, 45E10, 30H15
Keywords: Random walk, Lévy process, Wiener–Hopf factorisation, Nevanlinna class
Kwaśnicki, Mateusz 1

1 Department of Pure Mathematics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław (Poland)
@article{AHL_2020__3__1389_0,
     author = {Kwa\'snicki, Mateusz},
     title = {Random walks are determined by their trace on~the positive half-line},
     journal = {Annales Henri Lebesgue},
     pages = {1389--1397},
     publisher = {\'ENS Rennes},
     volume = {3},
     year = {2020},
     doi = {10.5802/ahl.64},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ahl.64/}
}
TY  - JOUR
AU  - Kwaśnicki, Mateusz
TI  - Random walks are determined by their trace on the positive half-line
JO  - Annales Henri Lebesgue
PY  - 2020
SP  - 1389
EP  - 1397
VL  - 3
PB  - ÉNS Rennes
UR  - http://archive.numdam.org/articles/10.5802/ahl.64/
DO  - 10.5802/ahl.64
LA  - en
ID  - AHL_2020__3__1389_0
ER  - 
%0 Journal Article
%A Kwaśnicki, Mateusz
%T Random walks are determined by their trace on the positive half-line
%J Annales Henri Lebesgue
%D 2020
%P 1389-1397
%V 3
%I ÉNS Rennes
%U http://archive.numdam.org/articles/10.5802/ahl.64/
%R 10.5802/ahl.64
%G en
%F AHL_2020__3__1389_0
Kwaśnicki, Mateusz. Random walks are determined by their trace on the positive half-line. Annales Henri Lebesgue, Volume 3 (2020), pp. 1389-1397. doi : 10.5802/ahl.64. http://archive.numdam.org/articles/10.5802/ahl.64/

[CD20] Chaumont, Loïc; Doney, Ron On distributions determined by their upward, space-time Wiener–Hopf factor, J. Theor. Probab., Volume 33 (2020) no. 2, pp. 1011-1033 | DOI | MR | Zbl

[Con73] Conway, John B. Functions of one complex variable, Graduate Texts in Mathematics, 11, Springer, 1973 | MR | Zbl

[Gar07] Garnett, John Brady Bounded Analytic Functions, Graduate Texts in Mathematics, 236, Springer, 2007 | MR

[LMS76] Letac, Gérard G.; Mazet, Pierre; Schiffman, Gérard A note on left-continuous random walks, J. Appl. Probab., Volume 13 (1976) no. 4, pp. 814-817 | DOI | MR | Zbl

[LO77] Linnik, Yuriĭ V.; Ostrovskiĭ, Iosif V. Decomposition of random variables and vectors, Translations of Mathematical Monographs, 48, American Mathematical Society, 1977 | MR

[Mas09] Mashreghi, Javad Representation theorems in Hardy spaces, London Mathematical Society Student Texts, Cambridge University Press, 2009 | Zbl

[Ost85] Ostrovskiĭ, Iosif V. Generalization of the Titchmarsh convolution theorem and the complex-valued measures uniquely determined by their restrictions to a half-line, Stability Problems for Stochastic Models (Uzhgorod, 1984) (Lecture Notes in Mathematics), Volume 1155, Springer, 1985, pp. 256-283 | DOI | MR | Zbl

[OU90] Ostrovskiĭ, Iosif V.; Ulanovskiĭ, Alexander M. Probability distributions and Borel measures uniquely determined by their restrictions to a half-space, Probability theory and mathematical statistics. Vol. II (Vilnius, 1989) (Grigelionos, B.; Prohorov, Yu V.; Sazonov, V. V.; Statulevičius, V., eds.), Mokslas, 1990, pp. 278-287

[Ula90] Ulanovskiĭ, Alexander M. Unique determination of the convolutions of measures in R m , m2, by their restriction to a set, J. Math. Sci., Volume 49 (1990) no. 6, pp. 1298-1301 | DOI

[Ula92] Ulanovskiĭ, Alexander M. On the determination of a measure by the restriction of its n-fold convolutions to a massive set, Teor. Funkts. Funkts. Anal. Prilozh., Volume 57 (1992), pp. 102-109 English translation in: J. Math. Sci. 77(1) (1995): 2997–3002

[Vig01] Vigon, Vincent Simplifiez vos Lévy en titillant la factorisation de Wiener–Hopf, Ph. D. Thesis, INSA de Rouen, (France) (2001)

[You15] Younsi, M. On removable sets for holomorphic functions, EMS Surv. Math. Sci., Volume 2 (2015) no. 2, pp. 219-254 | DOI | MR | Zbl

Cited by Sources: