Hamilton–Jacobi equations for mean-field disordered systems
[Equations de Hamilton–Jacobi pour les systèmes désordonnés en champ moyen]
Annales Henri Lebesgue, Tome 4 (2021), pp. 453-484.

Nous soutenons que les équations de Hamilton–Jacobi fournissent une approche pratique et intuitive pour étudier le comportement à grande échelle des systèmes désordonnés en champ moyen. Ce point de vue est illustré sur le problème de l’inférence d’une matrice de rang 1. Nous calculons la limite à grande échelle de l’énergie libre en montrant qu’elle satisfait une équation de Hamilton–Jacobi approximative avec un paramètre de viscosité et un terme d’erreur qui tendent vers zéro.

We argue that Hamilton–Jacobi equations provide a convenient and intuitive approach for studying the large-scale behavior of mean-field disordered systems. This point of view is illustrated on the problem of inference of a rank-one matrix. We compute the large-scale limit of the free energy by showing that it satisfies an approximate Hamilton–Jacobi equation with asymptotically vanishing viscosity parameter and error term.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.77
Classification : 82B44, 82D30
Mots clés : spin glass, statistical inference, Hamilton–Jacobi equation
Mourrat, Jean-Christophe 1

1 DMA, Ecole normale supérieure, CNRS, PSL University, Paris (France)
@article{AHL_2021__4__453_0,
     author = {Mourrat, Jean-Christophe},
     title = {Hamilton{\textendash}Jacobi equations for mean-field disordered systems},
     journal = {Annales Henri Lebesgue},
     pages = {453--484},
     publisher = {\'ENS Rennes},
     volume = {4},
     year = {2021},
     doi = {10.5802/ahl.77},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ahl.77/}
}
TY  - JOUR
AU  - Mourrat, Jean-Christophe
TI  - Hamilton–Jacobi equations for mean-field disordered systems
JO  - Annales Henri Lebesgue
PY  - 2021
SP  - 453
EP  - 484
VL  - 4
PB  - ÉNS Rennes
UR  - http://archive.numdam.org/articles/10.5802/ahl.77/
DO  - 10.5802/ahl.77
LA  - en
ID  - AHL_2021__4__453_0
ER  - 
%0 Journal Article
%A Mourrat, Jean-Christophe
%T Hamilton–Jacobi equations for mean-field disordered systems
%J Annales Henri Lebesgue
%D 2021
%P 453-484
%V 4
%I ÉNS Rennes
%U http://archive.numdam.org/articles/10.5802/ahl.77/
%R 10.5802/ahl.77
%G en
%F AHL_2021__4__453_0
Mourrat, Jean-Christophe. Hamilton–Jacobi equations for mean-field disordered systems. Annales Henri Lebesgue, Tome 4 (2021), pp. 453-484. doi : 10.5802/ahl.77. http://archive.numdam.org/articles/10.5802/ahl.77/

[BBCG08] Bakry, Dominique; Barthe, Franck; Cattiaux, Patrick; Guillin, Arnaud A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case, Electron. Commun. Probab., Volume 13 (2008), pp. 60-66 | DOI | MR | Zbl

[BDBG10] Barra, Adriano; Di Biasio, Aldo; Guerra, Francesco Replica symmetry breaking in mean-field spin glasses through the Hamilton–Jacobi technique, J. Stat. Mech. Theory Exp. (2010) no. 9, P09006 | MR | Zbl

[BDFT13] Barra, Adriano; Del Ferraro, Gino; Tantari, Daniele Mean field spin glasses treated with PDE techniques, Eur. Phys. J. B, Volume 86 (2013) no. 7, 332 | DOI | MR

[BDM + 16] Barbier, Jean; Dia, Mohamad; Macris, Nicolas; Krzakala, Florent; Lesieur, Thibault; Zdeborová, Lenka Mutual information for symmetric rank-one matrix estimation: a proof of the replica formula, Advances in Neural Information Processing Systems 29, Neural Information Processing Systems (2016), pp. 424-432 (https://openreview.net/forum?id=By-3GtZdWH)

[BLM13] Boucheron, Stéphane; Lugosi, Gábor; Massart, Pascal Concentration inequalities, Oxford University Press, 2013 | DOI | MR | Zbl

[BM19] Barbier, Jean; Macris, Nicolas The adaptive interpolation method: a simple scheme to prove replica formulas in Bayesian inference, Probab. Theory Relat. Fields, Volume 174 (2019) no. 3-4, pp. 1133-1185 | DOI | MR | Zbl

[BMM17] Barbier, Jean; Macris, Nicolas; Miolane, Léo The layered structure of tensor estimation and its mutual information, 55th Annual Allerton Conference on Communication, Control, and Computing, IEEE (2017), pp. 1056-1063 | DOI

[BZ83] Brankov, Jordan G.; Zagrebnov, Valentin A. On the description of the phase transition in the Husimi–Temperley model, J. Phys. A, Math. Gen., Volume 16 (1983) no. 10, pp. 2217-2224 | DOI | MR

[Cha14] Chatterjee, Sourav Superconcentration and related topics, Springer Monographs in Mathematics, Springer, 2014 | DOI | MR | Zbl

[CIL92] Crandall, Michael G.; Ishii, Hitoshi; Lions, Pierre-Louis User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1-67 | DOI | MR | Zbl

[DM14] Deshpande, Yash; Montanari, Andrea Information-theoretically optimal sparse PCA, IEEE International Symposium on Information Theory, IEEE (2014), pp. 2197-2201 | DOI

[EAK18] El Alaoui, Ahmed; Krzakala, Florent Estimation in the spiked Wigner model: a short proof of the replica formula (2018) (https://arxiv.org/abs/1801.01593)

[Eva10] Evans, Lawrence Craig Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010 | DOI | MR | Zbl

[Gue01] Guerra, Francesco Sum rules for the free energy in the mean field spin glass model, Mathematical physics in mathematics and physics (Siena, 2000) (Fields Institute Communications), Volume 30, American Mathematical Society (2001), pp. 161-170 | MR | Zbl

[Gue03] Guerra, Francesco Broken replica symmetry bounds in the mean field spin glass model, Commun. Math. Phys., Volume 233 (2003) no. 1, pp. 1-12 | DOI | MR | Zbl

[LKZ15] Lesieur, Thibault; Krzakala, Florent; Zdeborová, Lenka Phase transitions in sparse PCA, IEEE International Symposium on Information Theory, IEEE (2015), pp. 1635-1639 | DOI

[LM19] Lelarge, Marc; Miolane, Léo Fundamental limits of symmetric low-rank matrix estimation, Probab. Theory Relat. Fields, Volume 176 (2019) no. 3-4, pp. 859-929 | DOI | MR | Zbl

[LML + 17] Lesieur, Thibault; Miolane, Léo; Lelarge, Marc; Krzakala, Florent; Zdeborová, Lenka Statistical and computational phase transitions in spiked tensor estimation, 2017 IEEE International Symposium on Information Theory (ISIT), IEEE (2017), pp. 511-515 | DOI

[MPV87] Mézard, Marc; Parisi, Giorgio; Virasoro, Miguel Spin glass theory and beyond: an introduction to the replica method and its applications, 9, World Scientific, 1987 | DOI | Zbl

[New86] Newman, Charles Percolation theory: A selective survey of rigorous results, Advances in multiphase flow and related problems, Society for Industrial and Applied Mathematics, 1986 | Zbl

[Pan13] Panchenko, Dmitry The Sherrington–Kirkpatrick model, Springer Monographs in Mathematics, Springer, 2013 | DOI | MR | Zbl

[Tal06] Talagrand, Michel The Parisi formula, Ann. Math., Volume 163 (2006) no. 1, pp. 221-263 | DOI | MR | Zbl

[Tal07] Talagrand, Michel Mean field models for spin glasses: some obnoxious problems, Spin glasses (Lecture Notes in Mathematics), Volume 1900, Springer, 2007, pp. 63-80 | DOI | MR | Zbl

[Tal11] Talagrand, Michel Mean field models for spin glasses. Volume II: Advanced replica-symmetry and low temperature, Ergebnisse der Mathematik und ihrer Grenzgebiete, 55, Springer, 2011 | MR | Zbl

Cité par Sources :