Nous démontrons qu’un feuilletage de codimension un de qui est localement un produit autour de tous les points d’une composante de codimension de l’ensemble singulier, a une composante de Kupka. En particulier, nous obtenons une généralisation d’un résultat déjà connu de Calvo Andrade et Brunella sur les feuilletages avec une composante de Kupka.
In the main result of this paper we prove that a codimension one foliation of , which is locally a product near every point of some codimension two component of the singular set, has a Kupka component. In particular, we obtain a generalization of a known result of Calvo Andrade and Brunella about foliations with a Kupka component.
Accepté le :
Publié le :
Mots clés : foliation, locally product
@article{AHL_2021__4__485_0, author = {Lins-Neto, Alcides}, title = {Local transversely product singularities}, journal = {Annales Henri Lebesgue}, pages = {485--502}, publisher = {\'ENS Rennes}, volume = {4}, year = {2021}, doi = {10.5802/ahl.78}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.78/} }
Lins-Neto, Alcides. Local transversely product singularities. Annales Henri Lebesgue, Tome 4 (2021), pp. 485-502. doi : 10.5802/ahl.78. http://archive.numdam.org/articles/10.5802/ahl.78/
[Bru00] Birational geometry of foliations, Monografías de Matemática, IMPA – Instituto de Matemática Pura e Aplicada, 2000 | Zbl
[Bru09] Sur les feuilletages de l’espace projectif ayant une composante de Kupka, Enseign. Math., Volume 55 (2009) no. 3-4, pp. 227-234 | DOI | MR | Zbl
[CA99] Foliations with a Kupka component on algebraic manifolds, Bull. Braz. Math. Soc. (N.S.), Volume 30 (1999) no. 2, pp. 183-197 | DOI | MR | Zbl
[CA09] Foliations of codimension greater than one with a Kupka component, Qual. Theory Dyn. Syst., Volume 8 (2009) no. 2, pp. 241-253 | DOI | MR | Zbl
[CA16] Foliations with a radial Kupka set on projective spaces, Bull. Braz. Math. Soc. (N.S.), Volume 47 (2016) no. 4, pp. 1071-1083 | DOI | MR | Zbl
[CJCAFP14] Highter codimension foliations and Kupka singularities (2014) (https://arxiv.org/abs/1408.7020)
[CLN94] Codimension-one foliations in with Kupka components, Complex analytic methods in dynamical systems. Proceedings of the congress held at Instituto de Matemática Pura e Aplicada, IMPA, Rio de Janeiro, Brazil, January 1992 (Astérisque), Volume 222, Société Mathématique de France, 1994, pp. 93-132 | Numdam | Zbl
[CLN96] Irreducible components of the space of holomorphic foliations of degree two in , Ann. Math., Volume 143 (1996) no. 3, pp. 577-612 | DOI | MR | Zbl
[CLN13] A structural theorem for codimension-one foliations on , , with an application to degree three foliations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 12 (2013) no. 1, pp. 1-41 | MR | Zbl
[CLN19] Codimension two holomorphic foliations, J. Differ. Geom., Volume 113 (2019) no. 3, pp. 385-416 | MR | Zbl
[CS82] Invariant varieties through singularities of holomorphic vector fields, Ann. Math., Volume 115 (1982), pp. 579-595 | DOI | MR | Zbl
[DN13] Null correlation bundle on projective three space, J. Ramanujan Math. Soc., Volume 28A (2013), pp. 75-80 | MR | Zbl
[GML92] Germs of holomorphic vector fields in without a separatrix, Invent. Math., Volume 109 (1992) no. 2, pp. 211-219 | DOI | MR | Zbl
[LN99] A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier, Volume 49 (1999) no. 4, pp. 1369-1385 | Numdam | MR | Zbl
[Seb97] Sur l’existence de séparatrices locales des feuilletages des surfaces, Anais Acad. Brasil. Ci., Volume 69 (1997) no. 2, pp. 159-162 | Zbl
[Sei68] Reduction of singularities of the differential equation , Am. J. Math., Volume 90 (1968), pp. 248-269 | DOI | Zbl
Cité par Sources :