Local transversely product singularities
[Feuilletages à structure produit le long du lieu singulier]
Annales Henri Lebesgue, Tome 4 (2021), pp. 485-502.

Nous démontrons qu’un feuilletage de codimension un de n qui est localement un produit autour de tous les points d’une composante de codimension 2 de l’ensemble singulier, a une composante de Kupka. En particulier, nous obtenons une généralisation d’un résultat déjà connu de Calvo Andrade et Brunella sur les feuilletages avec une composante de Kupka.

In the main result of this paper we prove that a codimension one foliation of n , which is locally a product near every point of some codimension two component of the singular set, has a Kupka component. In particular, we obtain a generalization of a known result of Calvo Andrade and Brunella about foliations with a Kupka component.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/ahl.78
Classification : 37F75, 34M15
Mots clés : foliation, locally product
Lins-Neto, Alcides 1

1 IMPA, Est. D. Castorina, 110, 22460-320, Rio de Janeiro, RJ, (Brazil)
@article{AHL_2021__4__485_0,
     author = {Lins-Neto, Alcides},
     title = {Local transversely product singularities},
     journal = {Annales Henri Lebesgue},
     pages = {485--502},
     publisher = {\'ENS Rennes},
     volume = {4},
     year = {2021},
     doi = {10.5802/ahl.78},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ahl.78/}
}
TY  - JOUR
AU  - Lins-Neto, Alcides
TI  - Local transversely product singularities
JO  - Annales Henri Lebesgue
PY  - 2021
SP  - 485
EP  - 502
VL  - 4
PB  - ÉNS Rennes
UR  - http://archive.numdam.org/articles/10.5802/ahl.78/
DO  - 10.5802/ahl.78
LA  - en
ID  - AHL_2021__4__485_0
ER  - 
%0 Journal Article
%A Lins-Neto, Alcides
%T Local transversely product singularities
%J Annales Henri Lebesgue
%D 2021
%P 485-502
%V 4
%I ÉNS Rennes
%U http://archive.numdam.org/articles/10.5802/ahl.78/
%R 10.5802/ahl.78
%G en
%F AHL_2021__4__485_0
Lins-Neto, Alcides. Local transversely product singularities. Annales Henri Lebesgue, Tome 4 (2021), pp. 485-502. doi : 10.5802/ahl.78. http://archive.numdam.org/articles/10.5802/ahl.78/

[Bru00] Brunella, Marco Birational geometry of foliations, Monografías de Matemática, IMPA – Instituto de Matemática Pura e Aplicada, 2000 | Zbl

[Bru09] Brunella, Marco Sur les feuilletages de l’espace projectif ayant une composante de Kupka, Enseign. Math., Volume 55 (2009) no. 3-4, pp. 227-234 | DOI | MR | Zbl

[CA99] Calvo-Andrade, Omegar Foliations with a Kupka component on algebraic manifolds, Bull. Braz. Math. Soc. (N.S.), Volume 30 (1999) no. 2, pp. 183-197 | DOI | MR | Zbl

[CA09] Calvo-Andrade, Omegar Foliations of codimension greater than one with a Kupka component, Qual. Theory Dyn. Syst., Volume 8 (2009) no. 2, pp. 241-253 | DOI | MR | Zbl

[CA16] Calvo-Andrade, Omegar Foliations with a radial Kupka set on projective spaces, Bull. Braz. Math. Soc. (N.S.), Volume 47 (2016) no. 4, pp. 1071-1083 | DOI | MR | Zbl

[CJCAFP14] Corrêa Jr., Mauricio; Calvo-Andrade, Omegar; Fernández-Pérez, Arturo Highter codimension foliations and Kupka singularities (2014) (https://arxiv.org/abs/1408.7020)

[CLN94] Cerveau, Dominique; Lins Neto, Alcides Codimension-one foliations in P n ,n3 with Kupka components, Complex analytic methods in dynamical systems. Proceedings of the congress held at Instituto de Matemática Pura e Aplicada, IMPA, Rio de Janeiro, Brazil, January 1992 (Astérisque), Volume 222, Société Mathématique de France, 1994, pp. 93-132 | Numdam | Zbl

[CLN96] Cerveau, Dominique; Lins Neto, Alcides Irreducible components of the space of holomorphic foliations of degree two in ℂℙ(n),n3, Ann. Math., Volume 143 (1996) no. 3, pp. 577-612 | DOI | MR | Zbl

[CLN13] Cerveau, Dominique; Lins Neto, Alcides A structural theorem for codimension-one foliations on n , n3, with an application to degree three foliations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 12 (2013) no. 1, pp. 1-41 | MR | Zbl

[CLN19] Cerveau, Dominique; Lins Neto, Alcides Codimension two holomorphic foliations, J. Differ. Geom., Volume 113 (2019) no. 3, pp. 385-416 | MR | Zbl

[CS82] Camacho, Cesar; Sad, Paulo Invariant varieties through singularities of holomorphic vector fields, Ann. Math., Volume 115 (1982), pp. 579-595 | DOI | MR | Zbl

[DN13] Dan, Krishanu; Nagaraj, Donihakkalu Shankar Null correlation bundle on projective three space, J. Ramanujan Math. Soc., Volume 28A (2013), pp. 75-80 | MR | Zbl

[GML92] Gómez-Mont, Xavier; Luengo, I. Germs of holomorphic vector fields in 3 without a separatrix, Invent. Math., Volume 109 (1992) no. 2, pp. 211-219 | DOI | MR | Zbl

[LN99] Lins Neto, Alcides A note on projective Levi flats and minimal sets of algebraic foliations, Ann. Inst. Fourier, Volume 49 (1999) no. 4, pp. 1369-1385 | Numdam | MR | Zbl

[Seb97] Sebastiani, Marcos Sur l’existence de séparatrices locales des feuilletages des surfaces, Anais Acad. Brasil. Ci., Volume 69 (1997) no. 2, pp. 159-162 | Zbl

[Sei68] Seidenberg, Abraham Reduction of singularities of the differential equation Ady=Bdx, Am. J. Math., Volume 90 (1968), pp. 248-269 | DOI | Zbl

Cité par Sources :