Racines de polynômes de Bernstein
Annales de l'Institut Fourier, Tome 36 (1986) no. 4, pp. 1-30.

On considère un polynôme P, à coefficients réels non négatifs, à deux indéterminées. On montre que la connaissance des pôles des intégrales

0 1 0 1 x 1 β 1 - 1 x 2 β 2 - 1 P ( x 1 , x 2 ) s d x 1 d x 2

donne des renseignements sur les racines du polynômes de Bernstein de P. La détermination des pôles des intégrales peut se faire en utilisant certaines méthodes de Mellin. Des calculs explicites sont donnés.

Let P be a polynomial with non negative real coefficients, in two indeterminates. One shows that the knowledge of the poles of the integrals

0 1 0 1 x 1 β 1 - 1 x 2 β 2 - 1 P ( x 1 , x 2 ) s d x 1 d x 2

gives some of the roots of the Bernstein polynomial of P. One can calculate poles of these integrals using some Mellin’s methods. Some explicit computations are given.

@article{AIF_1986__36_4_1_0,
     author = {Cassou-Nogu\`es, Pierrette},
     title = {Racines de polyn\^omes de {Bernstein}},
     journal = {Annales de l'Institut Fourier},
     pages = {1--30},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {36},
     number = {4},
     year = {1986},
     doi = {10.5802/aif.1067},
     mrnumber = {88c:32012},
     zbl = {0597.32004},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/aif.1067/}
}
TY  - JOUR
AU  - Cassou-Noguès, Pierrette
TI  - Racines de polynômes de Bernstein
JO  - Annales de l'Institut Fourier
PY  - 1986
SP  - 1
EP  - 30
VL  - 36
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.1067/
DO  - 10.5802/aif.1067
LA  - fr
ID  - AIF_1986__36_4_1_0
ER  - 
%0 Journal Article
%A Cassou-Noguès, Pierrette
%T Racines de polynômes de Bernstein
%J Annales de l'Institut Fourier
%D 1986
%P 1-30
%V 36
%N 4
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.1067/
%R 10.5802/aif.1067
%G fr
%F AIF_1986__36_4_1_0
Cassou-Noguès, Pierrette. Racines de polynômes de Bernstein. Annales de l'Institut Fourier, Tome 36 (1986) no. 4, pp. 1-30. doi : 10.5802/aif.1067. http://archive.numdam.org/articles/10.5802/aif.1067/

[1] V. Arnold, On some problems in singularity theory, Geometry and Analysis, Papers dedicated to the memory of V. K. Patodi, Springer Verlag, 1981. | Zbl

[2] I. N. Bernstein, Feasibility of the analytic continuation fλ+ for certain polynomials f translated from Funktsional'nyi Analiz i Ego Prilozheniya, vol. 2, n° 1, p. 92-93, January-March 1968. | MR | Zbl

[3] P. Cassou-Noguès, Séries de Dirichlet et intégrales associées à un polynôme à deux indéterminées, Journal of Number Theory, Vol. 23, n° 1 (1986), 1-54. | MR | Zbl

[4] M. Kashiwara, B functions and holonomic systems, Rationality of roots of b functions, Invent. Math., (1976-1977), 33-53. | EuDML | Zbl

[5] B. Malgrange, Le polynôme de Bernstein d'une singularité isolée, Lecture Notes in Math., vol. 459, Springer Verlag 1975, 98-119. | MR | Zbl

[6] T. Yano, On the theory of b-functions, Publ. Res. Inst. Math. Sci., 14 (1978), 111-202. | MR | Zbl

[7] T. Yano, b-functions and exponents of hypersurface isolated singularities, Proceedings of Symposia in Pure Mathematics, vol. 40 (1983), Part. 2. | MR | Zbl

[8] F. Ehlers et K. Lo, Minimal characteristic exponent of the Gauss-Manin connection of isolated singular point and Newton polyhedron, Math. Ann., 259 (1982), 431-441. | EuDML | MR | Zbl

Cité par Sources :