Nous démontrons que la fibration orientable de fibre ayant même type d’homotopie que l’espace homogène
We show that an orientable fibration whose fiber has a homotopy type of homogeneous space
@article{AIF_1987__37_1_81_0, author = {Shiga, H. and Tezuka, M.}, title = {Rational fibrations homogeneous spaces with positive {Euler} characteristics and {Jacobians}}, journal = {Annales de l'Institut Fourier}, pages = {81--106}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {37}, number = {1}, year = {1987}, doi = {10.5802/aif.1078}, mrnumber = {89g:55019}, zbl = {0608.55006}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1078/} }
TY - JOUR AU - Shiga, H. AU - Tezuka, M. TI - Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians JO - Annales de l'Institut Fourier PY - 1987 SP - 81 EP - 106 VL - 37 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1078/ DO - 10.5802/aif.1078 LA - en ID - AIF_1987__37_1_81_0 ER -
%0 Journal Article %A Shiga, H. %A Tezuka, M. %T Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians %J Annales de l'Institut Fourier %D 1987 %P 81-106 %V 37 %N 1 %I Institut Fourier %C Grenoble %U https://www.numdam.org/articles/10.5802/aif.1078/ %R 10.5802/aif.1078 %G en %F AIF_1987__37_1_81_0
Shiga, H.; Tezuka, M. Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians. Annales de l'Institut Fourier, Tome 37 (1987) no. 1, pp. 81-106. doi : 10.5802/aif.1078. https://www.numdam.org/articles/10.5802/aif.1078/
[1] Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207. | MR | Zbl
,[2] Les sous-groupes fermés de rang maximal de Lie clos, Comm. Math. Helv., 23 (1949), 200-221. | EuDML | MR | Zbl
and ,[3] Simple groups of Lie type, John Wilely and Sons, London, 1972. | MR | Zbl
,[4] Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778-782. | MR | Zbl
,[5] The product of the generators of a finite group generated by reflections, Duke Math. J., 18 (1951), 391-441. | MR | Zbl
,[6] Finitess in the minimal models of Sullivan, Trans. A.M.S., 230 (1977), 173-199. | MR | Zbl
,[7] The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), 997-1032. | MR | Zbl
,[8] Commutative Algebra, second edition, Benjamin (1980). | MR | Zbl
,[9] Rational Universal fibration and Flag manifolds, Math. Ann., 258 (1982), 329-340. | EuDML | MR | Zbl
,[10] The mod 2 cohomology rings of extra-special 2-groups and the Spinor groups, Math. Ann., 194 (1971), 197-212. | MR | Zbl
,[11] Deformation theory and rational homotopy type, (to appear).
and ,[12] Lectures on Chevalley groups, Yale Univ. (1967).
,[13] Infinitesimal computations in Topology, Publ. I.H.E.S., 47 (1977), 269-332. | Numdam | MR | Zbl
,[14] Homotopie rationnelle des fibrations de Serre, Ann. Inst. Fourier, 31-3 (1981), 71-90. | Numdam | MR | Zbl
,[15] Quelques questions commentées sur la fibre d'Eilengerg-Moore d'une fibration de Serre, Publ. Lille, 3, no 6 (1981).
,[16] Classifying maps and homogeneous spaces, (preprint).
,[17] A note on the cohomology of a fiber space whose fiber is a homogeneous space, (preprint). | Zbl
, and ,[18] Cohomology automorphisms of some Homogeneous spaces, to appear in Topology and its applications (Singapore conference volume). | Zbl
and ,- Halperin’s conjecture in formal dimensions up to 20, Communications in Algebra, Volume 51 (2023) no. 8, p. 3606 | DOI:10.1080/00927872.2023.2186705
- k-th singular locus moduli algebras of singularities and their derivation Lie algebras, Journal of Mathematical Physics, Volume 64 (2023) no. 3 | DOI:10.1063/5.0121485
- Hochschild cohomology of certain Koszul Sullivan Extensions, Quaestiones Mathematicae, Volume 45 (2022) no. 12, p. 1895 | DOI:10.2989/16073606.2021.1977733
- Relative Gottlieb Groups of Embeddings between Complex Grassmannians, International Journal of Mathematics and Mathematical Sciences, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/1417769
- On a DGL-map between derivations of Sullivan minimal models, Arabian Journal of Mathematics, Volume 9 (2020) no. 3, p. 739 | DOI:10.1007/s40065-020-00291-0
- Matrix factorisations arising from well-generated complex reflection groups, Journal of Algebra, Volume 556 (2020), p. 1018 | DOI:10.1016/j.jalgebra.2020.03.015
- Rational cohomologies of classifying spaces for homogeneous spaces of small rank, Arabian Journal of Mathematics, Volume 5 (2016) no. 4, p. 225 | DOI:10.1007/s40065-016-0156-y
- Derivations of the moduli algebras of weighted homogeneous hypersurface singularities, Journal of Algebra, Volume 457 (2016), p. 18 | DOI:10.1016/j.jalgebra.2016.03.003
- Fiber-homotopy self-equivalences and a classification of fibrations in rational homotopy, Journal of Homotopy and Related Structures, Volume 11 (2016) no. 4, p. 957 | DOI:10.1007/s40062-016-0152-0
- Positive curvature and rational ellipticity, Algebraic Geometric Topology, Volume 15 (2015) no. 4, p. 2269 | DOI:10.2140/agt.2015.15.2269
- A fibre-restricted Gottlieb group and its rational realization problem, Topology and its Applications, Volume 196 (2015), p. 1060 | DOI:10.1016/j.topol.2015.05.066
- Sullivan minimal models of classifying spaces for non-formal spaces of small rank, Topology and its Applications, Volume 196 (2015), p. 290 | DOI:10.1016/j.topol.2015.10.003
- On fibrations with formal elliptic fibers, Advances in Mathematics, Volume 231 (2012) no. 3-4, p. 2048 | DOI:10.1016/j.aim.2012.07.022
- Rational homotopy type of the classifying space for fibrewise self-equivalences, Proceedings of the American Mathematical Society, Volume 141 (2012) no. 6, p. 2153 | DOI:10.1090/s0002-9939-2012-11560-6
- On the genus of elliptic fibrations, Proceedings of the American Mathematical Society, Volume 132 (2003) no. 2, p. 597 | DOI:10.1090/s0002-9939-03-07203-4
- Obstructions to nonnegative curvature and rational homotopy theory, Journal of the American Mathematical Society, Volume 16 (2002) no. 2, p. 259 | DOI:10.1090/s0894-0347-02-00418-6
- The rational homotopy Lie algebra of classifying spaces for formal two-stage spaces, Journal of Pure and Applied Algebra, Volume 160 (2001) no. 2-3, p. 333 | DOI:10.1016/s0022-4049(00)00082-7
- Rational homotopy of circle actions, Pacific Journal of Mathematics, Volume 191 (1999) no. 2, p. 275 | DOI:10.2140/pjm.1999.191.275
- Algèbres de Lie de dérivations de certaines algèbres pures, Journal of Pure and Applied Algebra, Volume 91 (1994) no. 1-3, p. 121 | DOI:10.1016/0022-4049(94)90137-6
- Homologie de l'espace des lacets, problémes et questions, Journal of Pure and Applied Algebra, Volume 91 (1994) no. 1-3, p. 355 | DOI:10.1016/0022-4049(94)90151-1
- Note on a conjecture of Stephen Halperin's, Topology and Combinatorial Group Theory, Volume 1440 (1990), p. 148 | DOI:10.1007/bfb0084459
- Cohomology automorphisms of some homogeneous spaces, Topology and its Applications, Volume 25 (1987) no. 2, p. 143 | DOI:10.1016/0166-8641(87)90007-1
Cité par 22 documents. Sources : Crossref