Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians
Annales de l'Institut Fourier, Tome 37 (1987) no. 1, pp. 81-106.

Nous démontrons que la fibration orientable de fibre ayant même type d’homotopie que l’espace homogène G/U avec rang G=rangU est totalement non homologue à zéro pour les coefficients rationnels. Nous utilisons le jacobien formé par des poloynômes invariants pour le groupe de Weyl de G. Nous démontrons également que le résultat est valable pour les coefficients mod.p si p ne divise pas l’ordre du groupe de Weyl de G.

We show that an orientable fibration whose fiber has a homotopy type of homogeneous space G/U with rank G=rangU is totally non homologous to zero for rational coefficients. The Jacobian formed by invariant polynomial under the Weyl group of G plays a key role in the proof. We also show that it is valid for mod.p coefficients if p does not divide the order of the Weyl group of G.

@article{AIF_1987__37_1_81_0,
     author = {Shiga, H. and Tezuka, M.},
     title = {Rational fibrations homogeneous spaces with positive {Euler} characteristics and {Jacobians}},
     journal = {Annales de l'Institut Fourier},
     pages = {81--106},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {37},
     number = {1},
     year = {1987},
     doi = {10.5802/aif.1078},
     mrnumber = {89g:55019},
     zbl = {0608.55006},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1078/}
}
TY  - JOUR
AU  - Shiga, H.
AU  - Tezuka, M.
TI  - Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians
JO  - Annales de l'Institut Fourier
PY  - 1987
SP  - 81
EP  - 106
VL  - 37
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.1078/
DO  - 10.5802/aif.1078
LA  - en
ID  - AIF_1987__37_1_81_0
ER  - 
%0 Journal Article
%A Shiga, H.
%A Tezuka, M.
%T Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians
%J Annales de l'Institut Fourier
%D 1987
%P 81-106
%V 37
%N 1
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1078/
%R 10.5802/aif.1078
%G en
%F AIF_1987__37_1_81_0
Shiga, H.; Tezuka, M. Rational fibrations homogeneous spaces with positive Euler characteristics and Jacobians. Annales de l'Institut Fourier, Tome 37 (1987) no. 1, pp. 81-106. doi : 10.5802/aif.1078. https://www.numdam.org/articles/10.5802/aif.1078/

[1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207. | MR | Zbl

[2] A. Borel and J.D. Siebenthal, Les sous-groupes fermés de rang maximal de Lie clos, Comm. Math. Helv., 23 (1949), 200-221. | EuDML | MR | Zbl

[3] R.W. Cater, Simple groups of Lie type, John Wilely and Sons, London, 1972. | MR | Zbl

[4] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math., 77 (1955), 778-782. | MR | Zbl

[5] H. Coxeter, The product of the generators of a finite group generated by reflections, Duke Math. J., 18 (1951), 391-441. | MR | Zbl

[6] S. Halperin, Finitess in the minimal models of Sullivan, Trans. A.M.S., 230 (1977), 173-199. | MR | Zbl

[7] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), 997-1032. | MR | Zbl

[8] H. Matsumura, Commutative Algebra, second edition, Benjamin (1980). | MR | Zbl

[9] W. Meier, Rational Universal fibration and Flag manifolds, Math. Ann., 258 (1982), 329-340. | EuDML | MR | Zbl

[10] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the Spinor groups, Math. Ann., 194 (1971), 197-212. | MR | Zbl

[11] M. Schlessinger and J. Stascheff, Deformation theory and rational homotopy type, (to appear).

[12] R. Steinberg, Lectures on Chevalley groups, Yale Univ. (1967).

[13] D. Sullivan, Infinitesimal computations in Topology, Publ. I.H.E.S., 47 (1977), 269-332. | Numdam | MR | Zbl

[14] J.C. Thomas, Homotopie rationnelle des fibrations de Serre, Ann. Inst. Fourier, 31-3 (1981), 71-90. | Numdam | MR | Zbl

[15] J.C. Thomas, Quelques questions commentées sur la fibre d'Eilengerg-Moore d'une fibration de Serre, Publ. Lille, 3, no 6 (1981).

[16] H. Shiga, Classifying maps and homogeneous spaces, (preprint).

[17] A. Kono, H. Shiga and M. Tezuka, A note on the cohomology of a fiber space whose fiber is a homogeneous space, (preprint). | Zbl

[18] H. Shiga and M. Tezuka, Cohomology automorphisms of some Homogeneous spaces, to appear in Topology and its applications (Singapore conference volume). | Zbl

  • Kennard, Lee; Wu, Yantao Halperin’s conjecture in formal dimensions up to 20, Communications in Algebra, Volume 51 (2023) no. 8, p. 3606 | DOI:10.1080/00927872.2023.2186705
  • Ma, Guorui; Yau, Stephen S.-T.; Zuo, Huaiqing k-th singular locus moduli algebras of singularities and their derivation Lie algebras, Journal of Mathematical Physics, Volume 64 (2023) no. 3 | DOI:10.1063/5.0121485
  • Gatsinzi, Jean Baptiste; Maphane, Oteng Hochschild cohomology of certain Koszul Sullivan Extensions, Quaestiones Mathematicae, Volume 45 (2022) no. 12, p. 1895 | DOI:10.2989/16073606.2021.1977733
  • Gatsinzi, J. B.; Vitagliano, Luca Relative Gottlieb Groups of Embeddings between Complex Grassmannians, International Journal of Mathematics and Mathematical Sciences, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/1417769
  • Yamaguchi, Toshihiro On a DGL-map between derivations of Sullivan minimal models, Arabian Journal of Mathematics, Volume 9 (2020) no. 3, p. 739 | DOI:10.1007/s40065-020-00291-0
  • Briggs, Benjamin Matrix factorisations arising from well-generated complex reflection groups, Journal of Algebra, Volume 556 (2020), p. 1018 | DOI:10.1016/j.jalgebra.2020.03.015
  • Nishinobu, Hirokazu; Yamaguchi, Toshihiro Rational cohomologies of classifying spaces for homogeneous spaces of small rank, Arabian Journal of Mathematics, Volume 5 (2016) no. 4, p. 225 | DOI:10.1007/s40065-016-0156-y
  • Yau, Stephen S.-T.; Zuo, Huaiqing Derivations of the moduli algebras of weighted homogeneous hypersurface singularities, Journal of Algebra, Volume 457 (2016), p. 18 | DOI:10.1016/j.jalgebra.2016.03.003
  • Yamaguchi, Toshihiro; Yokura, Shoji Fiber-homotopy self-equivalences and a classification of fibrations in rational homotopy, Journal of Homotopy and Related Structures, Volume 11 (2016) no. 4, p. 957 | DOI:10.1007/s40062-016-0152-0
  • Amann, Manuel; Kennard, Lee Positive curvature and rational ellipticity, Algebraic Geometric Topology, Volume 15 (2015) no. 4, p. 2269 | DOI:10.2140/agt.2015.15.2269
  • Yamaguchi, Toshihiro A fibre-restricted Gottlieb group and its rational realization problem, Topology and its Applications, Volume 196 (2015), p. 1060 | DOI:10.1016/j.topol.2015.05.066
  • Nishinobu, Hirokazu; Yamaguchi, Toshihiro Sullivan minimal models of classifying spaces for non-formal spaces of small rank, Topology and its Applications, Volume 196 (2015), p. 290 | DOI:10.1016/j.topol.2015.10.003
  • Amann, Manuel; Kapovitch, Vitali On fibrations with formal elliptic fibers, Advances in Mathematics, Volume 231 (2012) no. 3-4, p. 2048 | DOI:10.1016/j.aim.2012.07.022
  • Buijs, Urtzi; Smith, Samuel Rational homotopy type of the classifying space for fibrewise self-equivalences, Proceedings of the American Mathematical Society, Volume 141 (2012) no. 6, p. 2153 | DOI:10.1090/s0002-9939-2012-11560-6
  • Gatsinzi, J.-B. On the genus of elliptic fibrations, Proceedings of the American Mathematical Society, Volume 132 (2003) no. 2, p. 597 | DOI:10.1090/s0002-9939-03-07203-4
  • Belegradek, Igor; Kapovitch, Vitali Obstructions to nonnegative curvature and rational homotopy theory, Journal of the American Mathematical Society, Volume 16 (2002) no. 2, p. 259 | DOI:10.1090/s0894-0347-02-00418-6
  • Smith, Samuel Bruce The rational homotopy Lie algebra of classifying spaces for formal two-stage spaces, Journal of Pure and Applied Algebra, Volume 160 (2001) no. 2-3, p. 333 | DOI:10.1016/s0022-4049(00)00082-7
  • Hauschild, Volker Rational homotopy of circle actions, Pacific Journal of Mathematics, Volume 191 (1999) no. 2, p. 275 | DOI:10.2140/pjm.1999.191.275
  • Grivel, Pierre-Paul Algèbres de Lie de dérivations de certaines algèbres pures, Journal of Pure and Applied Algebra, Volume 91 (1994) no. 1-3, p. 121 | DOI:10.1016/0022-4049(94)90137-6
  • Thomas, Jean-Claude Homologie de l'espace des lacets, problémes et questions, Journal of Pure and Applied Algebra, Volume 91 (1994) no. 1-3, p. 355 | DOI:10.1016/0022-4049(94)90151-1
  • Lupton, Gregory Note on a conjecture of Stephen Halperin's, Topology and Combinatorial Group Theory, Volume 1440 (1990), p. 148 | DOI:10.1007/bfb0084459
  • Shiga, Hiroo; Tezuka, Michishige Cohomology automorphisms of some homogeneous spaces, Topology and its Applications, Volume 25 (1987) no. 2, p. 143 | DOI:10.1016/0166-8641(87)90007-1

Cité par 22 documents. Sources : Crossref