Fourier coefficients of continuous functions and a class of multipliers
Annales de l'Institut Fourier, Tome 38 (1988) no. 2, pp. 147-183.

Soit x une fonction bornée sur Z ; on définit le multiplicateur avec un symbole x (noté par Mx) par (Mxf)^=xf^, fL2(T). On étudie des conditions sur x qui garantissent “l’inégalité interpolationnelle” MxfLpCfL1αMxfLq1-α (ici 1<p<q, α=α(p,q,x) est entre 0 et 1 et C ne dépend pas de f). Cette inégalité exprime une sorte de régularité de Mx sur L1(T). (Pour la plupart les multiplicateurs en question ne sont pas de type faible (1,1).) On utilise ces résultats pour démontrer qu’il y a bien des sous-ensembles E de Z tels que chaque suite positive dans l2(E) puisse être majorée par la suite {|f^(n)|}nE pour une fonction continue f dont le spectre soit inclus dans E.

If x is a bounded function on Z, the multiplier with symbol x (denoted by Mx) is defined by (Mxf)^=xf^, fL2(T). We give some conditions on x ensuring the “interpolation inequality” MxfLpCfL1αMxfLq1-α (here 1<p<q and α=α(p,q,x) is between 0 and 1). In most cases considered Mx fails to have stronger L1-regularity properties (e.g. fails to be of weak type (1,1)). The results are applied to prove that for many sets EZ every positive sequence in 2(E) can be majorized by the sequence { |f^(n)|}nE for some continuous funtion f with spectrum in E.

@article{AIF_1988__38_2_147_0,
     author = {Kislyakov, Serguei V.},
     title = {Fourier coefficients of continuous functions and a class of multipliers},
     journal = {Annales de l'Institut Fourier},
     pages = {147--183},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {38},
     number = {2},
     year = {1988},
     doi = {10.5802/aif.1138},
     mrnumber = {89j:42004},
     zbl = {0607.42004},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1138/}
}
TY  - JOUR
AU  - Kislyakov, Serguei V.
TI  - Fourier coefficients of continuous functions and a class of multipliers
JO  - Annales de l'Institut Fourier
PY  - 1988
SP  - 147
EP  - 183
VL  - 38
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.1138/
DO  - 10.5802/aif.1138
LA  - en
ID  - AIF_1988__38_2_147_0
ER  - 
%0 Journal Article
%A Kislyakov, Serguei V.
%T Fourier coefficients of continuous functions and a class of multipliers
%J Annales de l'Institut Fourier
%D 1988
%P 147-183
%V 38
%N 2
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1138/
%R 10.5802/aif.1138
%G en
%F AIF_1988__38_2_147_0
Kislyakov, Serguei V. Fourier coefficients of continuous functions and a class of multipliers. Annales de l'Institut Fourier, Tome 38 (1988) no. 2, pp. 147-183. doi : 10.5802/aif.1138. https://www.numdam.org/articles/10.5802/aif.1138/

[1] J. Bourgain, Bilinear forms on Hé and bounded bianalytic functions, Trans. Amer. Math. Soc., 286, N° 1 (1984), 313-337. | MR | Zbl

[2] R. R. Coifman, G. Weiss, Extension of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83, N° 4 (1977), 569-645. | MR | Zbl

[3] K. De Leeuw, Y. Katznelson, J.-P. Kahane, Sur les coefficients de Fourier des fonctions continues, C. R. Acad. Sci. Paris, Sér. A, 285, N° 16 (1977), 1001-1003. | MR | Zbl

[4] J. García-Cuerva, J. L. Rubio De Francia, Weighted norm inequalities and related topics, North Holland, Amsterdam, New York, Oxford, 1985. | MR | Zbl

[5] S. V. Hruščëv (S. V. Khrushtchëv), S. A. Vinogradov, Free interpolation in the space of uniformly convergent Taylor series, Lecture Notes Math., 864, Springer, Berlin, 1981, 171-213. | MR | Zbl

[6] S. V. Kislyakov, On reflexive subspaces of the space C*A, Funktsionalnyi Anal. i ego Prilozhen., 13, No 1 (1979), 21-30 (Russian). | Zbl

[7] S. V. Kislyakov, Fourier coefficients of boundary values of functions analytic in the disc and in the bidisc, Trudy Matem. Inst. im. V. A. Steklova, 155 (1981), 77-94 (Russian). | MR | Zbl

[8] S. V. Kislyakov, A substitute for the weak type (1, 1) inequality for multiple Riesz projections, Linear and Complex Analysis Problem Book, Lecture Notes Math., 1043, Springer, Berlin, 1984, 322-324.

[9] B. Maurey, Nouveaux théorèmes de Nikishin (suite et fin), Séminaire Maurey-Schwartz, 1973-1974, Exposé No V, École Polytechnique, Paris, 1974. | Numdam | Zbl

[10] W. Rudin, Trigonometric series with gaps, J. Math. Mech., 9, N° 2 (1960), 203-227. | MR | Zbl

[11] S. Sawyer, Maximal inequalities of weak type, Ann. Math., 84, N° 1 (1966), 157-173. | MR | Zbl

[12] S. Sidon, Einige Sätze und Fragestellungen über Fourier-Koeffizienten, Math. Z., 34, N° 4 (1932), 477-480. | Zbl

[13] P. Sjögren, P. Sjölin, Littlewood-Paley decompositions and Fourier multipliers with singularities on certain sets, Ann. Inst. Fourier, 31, n° 1 (1981), 157-175. | Numdam | MR | Zbl

[14] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970. | MR | Zbl

[15] S. V. Vinogradov, A strengthening of the Kolmogorov theorem on conjugate function and interpolation properties of uniformly convergent power series, Trudy Matem. Inst. im V. A. Steklova, 155 (1981), 7-40 (Russian). | MR | Zbl

[16] A. Zygmund, Trigonometric series, vol. I, II, Cambridge at the University Press, 1959. | Zbl

Cité par Sources :