Il y a beaucoup d’analogues entre les courbes elliptiques et les groupes formels de hauteur finie. Dans cet article on utilise les groupes formels génériques de Lubin-Tate pour développer pour les points d’ordre sur un groupe formel, les idées de structure de niveau et l’accouplement déjà connus dans la théorie des courbes elliptiques.
There are many similarities between elliptic curves and formal groups of finite height. The points of order of a generic formal group are studied in order to develop the formal group analogue (applied to points of order ) of the concept of level structure and that of the -pairing known in elliptic curve theory.
@article{AIF_1988__38_4_17_0, author = {Zimmermann, Karl}, title = {Points of order $p$ of generic formal groups}, journal = {Annales de l'Institut Fourier}, pages = {17--32}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {4}, year = {1988}, doi = {10.5802/aif.1148}, zbl = {0644.14016}, mrnumber = {90a:14065}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1148/} }
TY - JOUR AU - Zimmermann, Karl TI - Points of order $p$ of generic formal groups JO - Annales de l'Institut Fourier PY - 1988 DA - 1988/// SP - 17 EP - 32 VL - 38 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1148/ UR - https://zbmath.org/?q=an%3A0644.14016 UR - https://www.ams.org/mathscinet-getitem?mr=90a:14065 UR - https://doi.org/10.5802/aif.1148 DO - 10.5802/aif.1148 LA - en ID - AIF_1988__38_4_17_0 ER -
Zimmermann, Karl. Points of order $p$ of generic formal groups. Annales de l'Institut Fourier, Tome 38 (1988) no. 4, pp. 17-32. doi : 10.5802/aif.1148. http://archive.numdam.org/articles/10.5802/aif.1148/
[1] Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967. | MR 38 #5742 | Zbl 0194.35301
,[2] Geometric Algebra, Interscience Publishers, New York, 1957. | MR 18,553e | Zbl 0077.02101
,[3] Elliptic modules, Math. USSR Sbornik, Vol. 23, N° 4, (1974), 561-592. | MR 52 #5580 | Zbl 0321.14014
,[4] Arithmetic Moduli of Eliptic Curves, Princeton University Press, New Jersey, 1985. | Zbl 0576.14026
and ,[5] Elliptic curves : Diophantine analysis, Springer Verlag 1978. | MR 81b:10009 | Zbl 0388.10001
,[6] One parameter formal Lie groups over p-adic integer rings, Ann. of Math., 81 (1965), 380-387.
,[7] Formal complex multiplication in local fields, Ann. of Math., 81 (1965), 380-387. | MR 30 #3094 | Zbl 0128.26501
and ,[8] Formal moduli for one parameter formal Lie group, Bull. Soc. Math. France, 94 (1966), 49-60. | Numdam | MR 39 #214 | Zbl 0156.04105
and ,[9] Canonical subgroups of formal groups, Trans. Amer. Math. Soc., 251 (1979), 103-127. | MR 80j:14039 | Zbl 0431.14014
,[10] The local Kronecker-Weber Theorem, Trans. Amer. Math. Soc., 267 (1981), 133-138. | MR 82i:12017 | Zbl 0476.12014
,[11] Local Rings, Interscience Publishers, New York, 1962. | MR 27 #5790 | Zbl 0123.03402
,Cité par Sources :