On deformations of holomorphic foliations
Annales de l'Institut Fourier, Tome 39 (1989) no. 2, pp. 417-449.

Pour un feuilletage holomorphe non singulier sur une variété compacte M, nous comparons les espaces versels K et K tr des déformations de en feuilletages holomorphes et en feuilletages transversalement holomorphes, respectivement. Pour cela, nous prouvons l’existence d’un déploiement versel de paramétré par un espace analytique K f isomorphe à π -1 (0)×Σ, où Σ est lisse et π:KK f est le morphisme d’oubli. On montre que l’application π est un épimorphisme dans deux situations : (i) si H 2 (M,Θ f )=0, où Θ f est le faisceau des germes de champs vectoriels holomorphes et tangents à , et (ii) s’il existe un feuilletage holomorphe transverse et supplémentaire de . Quand les conditions (i) et (ii) sont toutes deux vérifiées, on a KK f ×K tr .

Given a non-singular holomorphic foliation on a compact manifold M we analyze the relationship between the versal spaces K and K tr of deformations of as a holomorphic foliation and as a transversely holomorphic foliation respectively. With this purpose, we prove the existence of a versal unfolding of parametrized by an analytic space K f isomorphic to π -1 (0)×Σ where Σ is smooth and π : KK tr is the forgetful map. The map π is shown to be an epimorphism in two situations: (i) if H 2 (M,Θ f )=0, where Θ f is the sheaf of germs of holomorphic vector fields tangent to , and (ii) if there exists a holomorphic foliation transverse and supplementary to . When the conditions (i) and (ii) are both fulfilled then KK f ×K tr .

@article{AIF_1989__39_2_417_0,
     author = {Girbau, Joan and Nicolau, Marcel},
     title = {On deformations of holomorphic foliations},
     journal = {Annales de l'Institut Fourier},
     pages = {417--449},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {39},
     number = {2},
     year = {1989},
     doi = {10.5802/aif.1172},
     mrnumber = {91b:32021},
     zbl = {0659.32019},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1172/}
}
TY  - JOUR
AU  - Girbau, Joan
AU  - Nicolau, Marcel
TI  - On deformations of holomorphic foliations
JO  - Annales de l'Institut Fourier
PY  - 1989
SP  - 417
EP  - 449
VL  - 39
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.1172/
DO  - 10.5802/aif.1172
LA  - en
ID  - AIF_1989__39_2_417_0
ER  - 
%0 Journal Article
%A Girbau, Joan
%A Nicolau, Marcel
%T On deformations of holomorphic foliations
%J Annales de l'Institut Fourier
%D 1989
%P 417-449
%V 39
%N 2
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.1172/
%R 10.5802/aif.1172
%G en
%F AIF_1989__39_2_417_0
Girbau, Joan; Nicolau, Marcel. On deformations of holomorphic foliations. Annales de l'Institut Fourier, Tome 39 (1989) no. 2, pp. 417-449. doi : 10.5802/aif.1172. http://archive.numdam.org/articles/10.5802/aif.1172/

[1] M. Artin, On the Solutions of Analytic Equations, Inventiones Math., 5 (1968), 277-291. | MR | Zbl

[2] J.-L. Cathelineau, Déformations équivariantes d'espaces analytiques complexes compacts, Ann. Sc. Ec. Norm. Sup., 11 (1978), 391-406. | Numdam | MR | Zbl

[3] A. Douady, Déformations régulières, Sém. M. Cartan, 13e année, (1960-1961), n° 3. | Numdam | Zbl

[4] A. Douady, Le problème des modules pour les variétés analytiques complexes, Sém. Bourbaki, 17e année (1964-1965), n° 277. | Numdam | Zbl

[5] A. Douady, Le problème des modules pour les sous-espaces analytiques compactes d'un espace analytique donné, Ann. Inst. Fourier, Grenoble, 16-1 (1966), 1-95. | Numdam | MR | Zbl

[6] A. Douady, Le problème des modules locaux pour les espaces ℂ-analytiques compacts, Ann. Sc. Ec. Norm. Sup., 7 (1974), 569-602. | Numdam | MR | Zbl

[7] T. Duchamp, M. Kalka, Deformation theory for holomorphic foliations, J. Diff. Geom., 14 (1979), 317-337. | MR | Zbl

[8] T. Duchamp, M. Kalka, Holomorphic Foliations and Deformations of the Hopf foliation, Pacific J. of Math., 112 (1984), 69-81. | MR | Zbl

[9] J. Frenkel, Cohomologie non abélienne et espaces fibrés, Bull. Soc. Math. de France, 85 (1957), 135-220. | Numdam | MR | Zbl

[10] J. Girbau, A. Haefliger, D. Sundararaman, On deformations of transversely holomorphic foliations, Journal für die reine and angew. Math., 345 (1983), 122-147. | MR | Zbl

[11] J. Girbau, M. Nicolau, Deformations of holomorphic foliations and transversely holomorphic foliations, Research Notes in Math., 131 (1985), 162-173. | MR | Zbl

[12] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1964.

[13] X. Gomez-Mont, Transverse Deformations of Holomorphic Foliations, Contemporary Math., 58, part I, 127-139. | MR | Zbl

[14] A. Haefliger, Deformations of Transversely Holomorphic Flows on Spheres and Deformations of Hopf Manifolds, Compositio Math., 55 (1985), 241-251. | Numdam | MR | Zbl

[15] G. R. Kempf, Deformations of Symmetric Products. Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Studies, 97 (1981), 319-342. | MR | Zbl

[16] K. Kodaira, D. C. Spencer, On deformation of Complex Analytic Structures. I and II, Ann. of Math., 67 (1958), 328-466. | MR | Zbl

[17] K. Kodaira, D. C. Spencer, Multifoliate Structures, Ann. of Math., 74 (1961), 52-100. | MR | Zbl

[18] M. Kuranishi, Deformations of Compact Complex Manifolds, Montreal, 1971. | MR | Zbl

[19] B. Malgrange, Analytic Spaces. L'enseignement Math., t. XIV (1968), 1-28. | MR | Zbl

[20] J. Morrow, K. Kodaira, Complex Manifolds, New York, 1971. | MR | Zbl

[21] L. Nirenberg, A Complex Frobenius Theorem, Seminar of Analytic Functions, Inst. for Advanced Study, Princeton, (1957), 172-189. | Zbl

[22] B. Shiffman, A. J. Sommesse, Vanishing Theorems on Complex Manifolds, Progress in Math., Birkhäuser, Vol. 56 (1985). | MR | Zbl

[23] J. J. Wavrik, Obstructions to the existence of a Space of Moduli. Papers in Honour of K. Kodaira, Princeton Univ. Press, (1969), 403-414. | MR | Zbl

[24] J. J. Wavrik, A Theorem of Completenes for families of Compact Analytic Spaces, Trans. of the A.M.S., 163 (1972), 147-155. | MR | Zbl

[25] J. Wehler, Versal deformations of Hopf surfaces, Journal für die reine and angew. Math., 345 (1987), 122-147.

Cité par Sources :