Dans la première section de cet article nous caractérisons les cônes convexes fermés de
In the first section of this paper we give a characterization of those closed convex cones (wedges)
@article{AIF_1990__40_3_493_0, author = {Neeb, Karl-Hermann}, title = {Globality in semisimple {Lie} groups}, journal = {Annales de l'Institut Fourier}, pages = {493--536}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {3}, year = {1990}, doi = {10.5802/aif.1222}, mrnumber = {92h:17005}, zbl = {0703.17003}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1222/} }
TY - JOUR AU - Neeb, Karl-Hermann TI - Globality in semisimple Lie groups JO - Annales de l'Institut Fourier PY - 1990 SP - 493 EP - 536 VL - 40 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://www.numdam.org/articles/10.5802/aif.1222/ DO - 10.5802/aif.1222 LA - en ID - AIF_1990__40_3_493_0 ER -
Neeb, Karl-Hermann. Globality in semisimple Lie groups. Annales de l'Institut Fourier, Tome 40 (1990) no. 3, pp. 493-536. doi : 10.5802/aif.1222. https://www.numdam.org/articles/10.5802/aif.1222/
[BD] Representations of Compact Lie Groups, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1985. | Zbl
and ,[Fa1] Algèbres de Volterra et Transformation de Laplace Sphérique sur certains espaces symétriques ordonnés, Symposia Math., 29 (1989), 183-196. | MR | Zbl
,[Fa2] Algèbres de Jordan et Cônes symétriques, Notes d'un cours de l'Ecole d'Eté CIMPA-Universités de Poitiers, 22 Août-16 Septembre 1988.
,[Fo] Harmonic Analysis in Phase Space, Princeton University Press, Princeton, New Jersey, 1989. | MR | Zbl
,[HawE] The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1973. | MR | Zbl
and ,[HarC1] Representations of semi-simple Lie groups, IV, Amer. J. Math., 77 (1955), 743-777. | MR | Zbl
,[HarC2] Representations of semi-simple Lie groups, VI, Amer. J. Math., 78 (1956), 564-628. | Zbl
,[He] Differential Geometry, Lie Groups, and Symmetric Spaces, Acad. Press. London, 1978. | Zbl
,[HiHoL] Lie groups, Convex cones, and Semigroups, Oxford University Press, 1989. | MR | Zbl
, , ,[HiLPy] The Analytic and Topological Theory of Semigroups - Trends and Developments, to appear.
, , , Eds.,[Ho] Lie algebras with subalgebras with codimension one, Illinois J. Math., 9 (1965), 636-643. | MR | Zbl
,[Hu] Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1972. | MR | Zbl
,[L] Maximal subsemigroups of Lie groups that are total, Proceedings of the Edinburgh Math. Soc., 87 (1987), 497-501. | MR | Zbl
,[M] Compactifications of symmetric spaces, II, The Cartan domains, Amer. J. Math., 86 (1964), 358-378. | MR | Zbl
,[N1] The duality between subsemigroups of Lie groups and monotone functions, Transactions of the Amer. Math Soc., to appear. | Zbl
,[N2] Semigroups in the Universal Covering Group of SL(2), Semigroup Forum, to appear. | Zbl
,[O1] Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series, Funct. Anal. and Appl., 15 (1982), 275-285. | Zbl
,[O2] Invariant orderings in simple Lie groups. The solution to E.B. Vinberg's problem, Funct. Anal. and Appl., 16 (1982), 311-313. | MR | Zbl
,[Pa] Determination of invariant convex cones in simple Lie algebras, Arkiv för Mat., 21 (1984), 217-228. | MR | Zbl
,[S] Invariante Kegel in Liealgebren, Mitt. aus dem mathematischen Sem. Gieβen, Heft 188, 1988. | MR | Zbl
,[V] Invariant cones and orderings in Lie groups, Funct. Anal. and Appl., 14 (1980), 1-13. | MR | Zbl
,Cité par Sources :