Soit une hypersurface compacte lisse. Nous définissons comme le rapport où est la distance de à l’ensemble central de (en d’autres termes, est le rayon maximal d’un voisinage tubulaire ouvert de sans self-intersection). Nous prouvons que chaque hypersurface algébrique réelle non-singulière de degré peut être liée par une isotopie rigide avec une hypersurface algébrique de degré telle que . Ici , ne dépendent que de , et isotopie rigide est une isotopie qui passe seulement à travers des hypersurfaces algébriques de degré .
Comme application de ce résultat, nous démontrons qu’il existe des constantes telles que chaque paire de courbes planaires algébriques réelles non-singulières de degré peut être liée par une isotopie qui passe à travers des courbes algébriques de degré . On en déduit par ailleurs, pour fixé, une borne supérieure en fonction de , du nombre minimal de simplexes dans une triangulation d’une hypersurface algébrique de dimension , non singulière de degré .
Define for a smooth compact hypersurface of its crumpleness as the ratio , where is the distance from to its central set. (In other words, is the maximal radius of an open non-selfintersecting tube around in
We prove that any -dimensional non-singular compact algebraic hypersurface of degree is rigidly isotopic to an algebraic hypersurface of degree and of crumpleness . Here , depend only on , and rigid isotopy means an isotopy passing only through hypersurfaces of degree . As an application, we show that for some constants any two isotopic smooth non-singular algebraic compact curves of degree in can be connected by an isotopy passing only through algebraic curves of degree . As another application, we show how to derive an upper bound in terms of only (for a fixed ) for the minimal number of simplices in a - triangulation of a compact non-singular -dimensional algebraic hypersurface of degree .
@article{AIF_1991__41_1_11_0, author = {Nabutovsky, Alexander}, title = {Smoothing of real algebraic hypersurfaces by rigid isotopies}, journal = {Annales de l'Institut Fourier}, pages = {11--25}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {1}, year = {1991}, doi = {10.5802/aif.1246}, mrnumber = {92j:14070}, zbl = {0746.14022}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1246/} }
TY - JOUR AU - Nabutovsky, Alexander TI - Smoothing of real algebraic hypersurfaces by rigid isotopies JO - Annales de l'Institut Fourier PY - 1991 SP - 11 EP - 25 VL - 41 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1246/ DO - 10.5802/aif.1246 LA - en ID - AIF_1991__41_1_11_0 ER -
%0 Journal Article %A Nabutovsky, Alexander %T Smoothing of real algebraic hypersurfaces by rigid isotopies %J Annales de l'Institut Fourier %D 1991 %P 11-25 %V 41 %N 1 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.1246/ %R 10.5802/aif.1246 %G en %F AIF_1991__41_1_11_0
Nabutovsky, Alexander. Smoothing of real algebraic hypersurfaces by rigid isotopies. Annales de l'Institut Fourier, Tome 41 (1991) no. 1, pp. 11-25. doi : 10.5802/aif.1246. http://archive.numdam.org/articles/10.5802/aif.1246/
[AMR] Manifolds, Tensor Analysis, and Applications, Springer, 1988. | Zbl
, , ,[ABB] Effectiveness-non effectiveness in semi-algebraic and PL geometry, Inv. Math., 102 (1) (1990), 141-156. | MR | Zbl
, , ,[BZ] Geometric Inequalities, Springer, 1988. | Zbl
, ,[GPS] The intrinsic spread of a configuration in Rd, J. Amer. Math. Soc., 3 (1990), 639-651. | Zbl
, , ,[GV] Solving systems of polynomial inequalities in subexponential time, J. of Symbolic Computations, 5 (1988), 37-64. | MR | Zbl
, ,[GZK] On discriminants of multivariate polynomials, Funct. Analysis and Appl., 24 (1) (1990), 1-4 (in Russian). | Zbl
, , ,[L] Résolutions des systèmes d'équations algébriques, Theor. Comput. Sci., 15 (1981), 77-110. | MR | Zbl
,[LF1] Extremal problems for hypersurfaces of a given topological type, I, Siberian Math. J., 4(1) (1963), 145-176 (in Russian).
, ,[LF2] Extremal problems for hypersurfaces of a given topological type, II, Siberian Math. J., 6(5) (1965), 1026-1036 (in Russian). | Zbl
, ,[M] The central function of the boundary of a domain and its differentiable properties, J. of Geometry, 14 (1980), 182-202. | MR | Zbl
,[MW] On topological properties of the central set of a bounded domain in Rn, J. of Geometry, 15 (1981), 1-7. | MR | Zbl
, ,[Mo] Geometric Topology in Dimensions 2 and 3, Springer, 1977. | MR | Zbl
,[N1] Nonrecursive functions in real algebraic geometry, Bull. Amer. Math. Soc., 20 (1), 61-65. | MR | Zbl
,[N2] Isotopies and nonrecursive functions in real algebraic geometry, in Real Analytic and Algebraic Geometry, edited by M. Galbiati and A. Tognoli, Springer, Lect. Notes in Math., n° 1420, pp. 194-205. | MR | Zbl
,[N3] Number of solutions with a norm bounded by a given constant of a semilinear elliptic PDE with a generic right hand side, to appear in Trans. Amer. Math. Soc. | Zbl
,[R] Complex topological characteristics of real algebraic curves, Russian Math. Surveys, 33 (5) (1978), 85-98. | MR | Zbl
,[T] Elementary Topics in Differential Geometry, Springer, 1979. | MR | Zbl
,[VEL] On the skeleton of a Riemann manifold with an edge, Russian Math. Surveys, 33(3) (1978), 181-182. | Zbl
, , ,[Vi] Progress in the topology of real algebraic varieties over the last six years, Russian Math. Surveys, 41 (3) (1986), 55-82. | Zbl
,[V] Estimates of real roots of a system of algebraic equations, J. of Soviet Math., 34 (1986), 1754-1762. | Zbl
,[VW] Modern Algebra, v. II, Frederik Ungar Publishing Co, 1950.
,[Wh] Geometric Integration Theory, Princeton University Press, Princeton, 1957. | MR | Zbl
,Cité par Sources :