Nous étudions des conditions sous lesquelles une variété symplectique de dimension 4 admet une structure kählérienne compatible. La théorie des sphères plongées -holomorphes est généralisée au cas immergé. Nous démontrons comme conséquence qu’une variété symplectique de dimension 4 qui a deux réductions minimales, est nécessairement l’éclatement d’une surface rationnelle ou réglée.
We discuss conditions under which a symplectic 4-manifold has a compatible Kähler structure. The theory of -holomorphic embedded spheres is extended to the immersed case. As a consequence, it is shown that a symplectic 4-manifold which has two different minimal reductions must be the blow-up of a rational or ruled surface.
@article{AIF_1992__42_1-2_369_0, author = {Duff, Dusa Mc}, title = {Immersed spheres in symplectic 4-manifolds}, journal = {Annales de l'Institut Fourier}, pages = {369--392}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {42}, number = {1-2}, year = {1992}, doi = {10.5802/aif.1296}, mrnumber = {93k:53030}, zbl = {0756.53021}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1296/} }
TY - JOUR AU - Duff, Dusa Mc TI - Immersed spheres in symplectic 4-manifolds JO - Annales de l'Institut Fourier PY - 1992 SP - 369 EP - 392 VL - 42 IS - 1-2 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1296/ DO - 10.5802/aif.1296 LA - en ID - AIF_1992__42_1-2_369_0 ER -
Duff, Dusa Mc. Immersed spheres in symplectic 4-manifolds. Annales de l'Institut Fourier, Tome 42 (1992) no. 1-2, pp. 369-392. doi : 10.5802/aif.1296. http://archive.numdam.org/articles/10.5802/aif.1296/
[BPV] Complex Surfaces, Springer Verlag, 1984. | MR | Zbl
, & ,[U] Higher dimensional complex geometry, Astérisque, 166 (1989).
, , ,[FGG] Four dimensional parallelizable symplectic and complex manifolds, Proc. Amer. Math. Soc., 103 (1988), 1209-1212. | MR | Zbl
, , ,[FM] Diffeomorphism types of 4-manifolds, Journ. Diff. Geo., (1988).
and ,[GR] Pseudo-holomorphic curves on almost-complex manifolds, Invent. Math., 82 (1985), 307-347. | MR | Zbl
,[EX] Examples of symplectic structures, Invent. Math., 89 (1987), 13-36. | MR | Zbl
,[RR] The Structure of Rational and Ruled Symplectic 4-manifolds, Journ. Amer. Math. Soc., 3 (1990), 679-712. | MR | Zbl
,[EL] Elliptic methods in symplectic geometry, Bull. Amer. Math. Soc., 23 (1990), 311-358. | MR | Zbl
,[BL] Blow ups and symplectic embeddings in dimension 4, Topology, 30 (1991), 409-421. | MR | Zbl
,[LB] The Local Behaviour of holomorphic curves in almost complex 4-manifolds, Journ. Diff. Geom., 34 (1991), 143-164. | MR | Zbl
,[KY] Symplectic 4-manifolds, to appear in Proceedings of I.C.M., Kyoto, 1990. | MR | Zbl
,[UB] Remarks on the uniqueness of symplectic blowing up, preprint, 1990.
,[RU] Notes on Ruled Symplectic 4-manifolds, preprint, 1992. | Zbl
,[PW] A compactness theorem for Gromov's moduli space, preprint, 1991.
and ,[TH] Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc., 55 (1976), 467-468. | MR | Zbl
,[WO] Gromov's compactness of pseudo-holomorphic curves and symplectic geometry, J. Diff. Geom., 28 (1988), 383-405. | MR | Zbl
,[YE] Gromov's Compactness Theorem for Pseudo-holomorphic Curves, preprint, UCSB, 1991. | Zbl
,Cité par Sources :