We prove that 7. 398 537 is an irrationality measure of . We employ double integrals of suitable rational functions invariant under a group of birational transformations of . The numerical results are obtained with the aid of a semi-infinite linear programming method.
On démontre que 7. 398 537 est une mesure d’irrationalité de . On utilise des intégrales doubles de fonctions rationnelles stables par un groupe de transformations birationnelles de . Les résultats numériques sont obtenus à l’aide d’une méthode de programmation linéaire semi-infinie.
@article{AIF_1993__43_1_85_0, author = {Rhin, Georges and Viola, Carlo}, title = {On the irrationality measure of $\zeta (2)$}, journal = {Annales de l'Institut Fourier}, pages = {85--109}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {1}, year = {1993}, doi = {10.5802/aif.1322}, zbl = {0776.11036}, mrnumber = {1209696}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1322/} }
TY - JOUR AU - Rhin, Georges AU - Viola, Carlo TI - On the irrationality measure of $\zeta (2)$ JO - Annales de l'Institut Fourier PY - 1993 SP - 85 EP - 109 VL - 43 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1322/ DO - 10.5802/aif.1322 LA - en ID - AIF_1993__43_1_85_0 ER -
Rhin, Georges; Viola, Carlo. On the irrationality measure of $\zeta (2)$. Annales de l'Institut Fourier, Volume 43 (1993) no. 1, pp. 85-109. doi : 10.5802/aif.1322. http://archive.numdam.org/articles/10.5802/aif.1322/
[1] Legendre polynomials and irrationality, J. reine angew. Math., 318 (1980), 137-155. | MR | Zbl
and ,[2] Linear Programming in infinite-dimensional spaces, Wiley-Interscience, 1987. | MR | Zbl
and ,[3] Irrationalité de et , Astérisque, 61 (1979), 11-13. | Numdam | MR | Zbl
,[4] A note on the irrationality of and , Bull. London Math. Soc., 11 (1979), 268-272. | MR | Zbl
,[5] Padé and rational approximations to systems of functions and their arithmetic applications, Lect. Notes in Math., 1052 (1984), 37-84. | MR | Zbl
and ,[6] Transcendental methods and Theta-functions, Proc. Symp. Pure Math., 49 (1989), part 2, 167-232. | MR | Zbl
and ,[7] Hermite-Padé approximations to exponential functions and elementary estimates of the measure of irrationality of π, Lect. Notes in Math., 925 (1982), 299-322. | MR | Zbl
,[8] Some remarks on Beukers' integrals, Colloquia Math. Soc. János Bolyai, 51 (1987), 637-657. | MR | Zbl
and ,[9] Legendre type polynomials and irrationality measures, J. reine angew. Math., 407 (1990), 99-125. | MR | Zbl
,[10] On the approximation of π, Proc. K. Ned. Akad. Wet. Amsterdam, A 56 (1953), 30-42. | MR | Zbl
,[11] Approximations rationnelles de π et quelques autres nombres, Bull. Soc. Math. France, Mémoire 37 (1974), 121-132. | Numdam | MR | Zbl
,[12] A simplex method for function minimization, Computer J., 7 (1965), 308-313. | Zbl
and ,[13] Numerical Recipes. The art of scientific computing, Cambridge University Press, 1986. | Zbl
, , , ,[14] Approximants de Padé et mesures effectives d'irrationalité, Progr. in Math., 71 (1987), 155-164. | MR | Zbl
,[15] A lower bound for the approximation of ln 2 by rational numbers (Russian), Vestnik Moskov Univ., Ser 1 Math. Mekh., 6 (1987), 25-29. | MR | Zbl
,Cited by Sources: