On considère le problème d’étendre le résultat de J.-P. Jouanolou à la densité des feuilletages holomorphes singuliers dans , sans solution algébrique, au cas des feuilletages par des courbes dans . On donne un exemple de feuilletage dans sans ensemble algébrique invariant (courbe ou surface) et on montre qu’un ensemble dense de feuilletages n’admet pas d’ensemble algébrique invariant.
We consider the problem of extending the result of J.-P. Jouanolou on the density of singular holomorphic foliations on without algebraic solutions to the case of foliations by curves on . We give an example of a foliation on with no invariant algebraic set (curve or surface) and prove that a dense set of foliations admits no invariant algebraic set.
@article{AIF_1993__43_1_143_0, author = {Soares, Marcio G.}, title = {On algebraic sets invariant by one-dimensional foliations on ${\bf C}P(3)$}, journal = {Annales de l'Institut Fourier}, pages = {143--162}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {1}, year = {1993}, doi = {10.5802/aif.1325}, mrnumber = {94b:32057}, zbl = {0770.57016}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1325/} }
TY - JOUR AU - Soares, Marcio G. TI - On algebraic sets invariant by one-dimensional foliations on ${\bf C}P(3)$ JO - Annales de l'Institut Fourier PY - 1993 SP - 143 EP - 162 VL - 43 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1325/ DO - 10.5802/aif.1325 LA - en ID - AIF_1993__43_1_143_0 ER -
%0 Journal Article %A Soares, Marcio G. %T On algebraic sets invariant by one-dimensional foliations on ${\bf C}P(3)$ %J Annales de l'Institut Fourier %D 1993 %P 143-162 %V 43 %N 1 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.1325/ %R 10.5802/aif.1325 %G en %F AIF_1993__43_1_143_0
Soares, Marcio G. On algebraic sets invariant by one-dimensional foliations on ${\bf C}P(3)$. Annales de l'Institut Fourier, Tome 43 (1993) no. 1, pp. 143-162. doi : 10.5802/aif.1325. http://archive.numdam.org/articles/10.5802/aif.1325/
[A] Chapitres Supplémentaires de la Théorie des Equations Differentielles Ordinaires, Ed. MIR, Moscou, 1980. | MR | Zbl
,[BB] Singularities of Holomorphic Foliations, J. Differential Geometry, vol. 7 (1972), 279-342. | MR | Zbl
, ,[C] Meromorphic Vector Fields and Characteristic Numbers, Scripta Mathematica, vol. XXIX, no 3-4. | MR | Zbl
,[CS] Invariant Varieties through Singularities of Holomorphic Vector Fields, Annals of Math., 115 (1982), 579-595. | MR | Zbl
, ,[GH] Principles of Algebraic Geometry, John Wiley, New York, 1978. | MR | Zbl
, ,[GM-OB] Sistemas Dinamicos Holomorfos en Superficies, Aportaciones Matematicas 3, Sociedad Mexicana de Matematica (1989). | MR | Zbl
, ,[J] Equations de Pfaff Algebriques, LNM 708, Springer-Verlag (1979). | MR | Zbl
,[L] Residues for Invariant Submanifolds of Foliations with Singularities, Annales de l'Institut Fourier, vol. 41, fasc. 1 (1991), 211-258. | EuDML | Numdam | MR | Zbl
,[LN1] Algebraic Solutions of Polynomial Differential Equations and Foliations in Dimension Two, LNM 1345, Springer-Verlag (1988). | MR | Zbl
,[LN2]Complex Codimension One Foliations leaving a Compact Submanifold Invariant, Dynamical Systems and Bifurcation Theory, Pitman Research Notes in Mathematics Series, vol. 160 (1987). | MR | Zbl
,[PM] Geometric Theory of Dynamical Systems, Springer-Verlag (1982). | Zbl
, ,[S] Quasihomogene Isolierte Singularitäten von Hyperflächen, Inventiones Math., 14 (1971), 123-142. | MR | Zbl
,Cité par Sources :