On the contraction of the discrete series of SU(1,1)
Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 551-567.

Nous montrons, en utilisant des idées provenant de la méthode des orbites, que toute représentation massive et d’énergie positive du groupe de Poincaré 𝒫 1,1 =SO(1,1) s 2 peut être obtenue par contraction de la série discrète de SU(1,1).

It is shown, using techniques inspired by the method of orbits, that each non-zero mass, positive energy representation of the Poincaré group 𝒫 1,1 =SO(1,1) s 2 can be obtained via contraction from the discrete series of representations of SU(1,1).

@article{AIF_1993__43_2_551_0,
     author = {Cishahayo, C. and Bi\`evre, S. De},
     title = {On the contraction of the discrete series of $SU(1,1)$},
     journal = {Annales de l'Institut Fourier},
     pages = {551--567},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {43},
     number = {2},
     year = {1993},
     doi = {10.5802/aif.1346},
     mrnumber = {94e:22023},
     zbl = {0793.22005},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1346/}
}
TY  - JOUR
AU  - Cishahayo, C.
AU  - Bièvre, S. De
TI  - On the contraction of the discrete series of $SU(1,1)$
JO  - Annales de l'Institut Fourier
PY  - 1993
SP  - 551
EP  - 567
VL  - 43
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.1346/
DO  - 10.5802/aif.1346
LA  - en
ID  - AIF_1993__43_2_551_0
ER  - 
%0 Journal Article
%A Cishahayo, C.
%A Bièvre, S. De
%T On the contraction of the discrete series of $SU(1,1)$
%J Annales de l'Institut Fourier
%D 1993
%P 551-567
%V 43
%N 2
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.1346/
%R 10.5802/aif.1346
%G en
%F AIF_1993__43_2_551_0
Cishahayo, C.; Bièvre, S. De. On the contraction of the discrete series of $SU(1,1)$. Annales de l'Institut Fourier, Tome 43 (1993) no. 2, pp. 551-567. doi : 10.5802/aif.1346. http://archive.numdam.org/articles/10.5802/aif.1346/

[AAG] S. T. Ali, J. P. Antoine, and J.P. Gazeau, De Sitter to Poincaré contraction and relativistic coherent states, Ann. Inst. H. Poincaré, 52 (1990), 83-111. | Numdam | MR | Zbl

[DBE] S. De Bièvre and A. El Gradechi, Quantum mechanics and coherent states on the Anti-de Sitter spacetime and their Poincaré contraction, Ann. Inst. H. Poincaré, 57 (1992), 403-428. | Numdam | MR | Zbl

[D] A. H. Dooley, Contractions of Lie groups and applications to analysis, in : Topics in modern harmonic analysis, Vol.I, 483-515 (Instituto Nazionale di Alta Matematica Francesco SEVERI, Roma 1983). | MR | Zbl

[DR1] A. H. Dooley and J. W. Rice, Contractions of rotation groups and their representations, Math. Proc. Camb. Phil. Soc., 94 (1983), 509-517. | MR | Zbl

[DR2] A. H. Dooley and J. W. Rice, On contractions of semisimple Lie groups, Trans. Amer. Math. Soc., 289 (1985), 185-202. | MR | Zbl

[E] A. El Gradechi, Théories classique et quantique sur l'espace-temps Anti-de Sitter et leurs limites à courbure nulle, Thèse de Doctorat, Université Paris 7, décembre 1991.

[EDB] A. El Gradechi and S. De Bièvre, Phase space quantum mechanics on the Anti-de Sitter spacetime and its Poincaré contraction, preprint 1992. | Zbl

[Fr] C. Fronsdal, Elementary particles in a curved space, Rev. Mod. Phys., 37 (1965), 221-224. | MR | Zbl

[GH] J. P. Gazeau and V. Hussin, Poincaré Contraction of SU (1, 1) Fock-Bargmann Structure, J. of Physics A, Math. Gen., 25 (1992), 1549-1573. | MR | Zbl

[Gi] R. Gilmore, Lie groups, Lie algebras and some of their Applications, Wiley, New York, 1974. | Zbl

[IW] E. Inönü and E. P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. U. S., 39 (1953), 510-524. | MR | Zbl

[Ki] A. Kirillov, Eléments de la Théorie des Représentations, Editions Mir, Moscou, 1974.

[Ko] B. Kostant, Quantization and unitary representations, Lecture Notes in Math., 170, Springer Verlag, Berlin, 1970. | MR | Zbl

[LM] P. Libermann and C. M. Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company, 1987. | MR | Zbl

[Ma] G. W. Mackey, On the analogy between semisimple Lie groups and certain related semi-direct product groups, in : Lie Groups and Their Representations, I. M. Gelfand (Ed.), 339-364 (Akadémiai Kiadó, Budapest 1975). | MR | Zbl

[MN] J. Mickelsson and J. Niederle, Contractions of representations of the Sitter groups, Commun. Math. Phys., 27 (1972), 167-180. | MR | Zbl

[Pe] A. Perelomov, Generalized Coherent States and their Applications, Springer Verlag, Berlin, 1986. | MR | Zbl

[R] P. Renouard, Variétés Symplectiques et Quantification, Thèse Orsay, 1969.

[Ra] J.H. Rawnsley, Representations of a semi-direct product by quantization, Math. Proc. Camb. Phil. Soc., 78 (1975), 345-350. | MR | Zbl

[Sa] J. Saletan, Contraction of Lie groups, J. Math. Phys., 2 (1961), 1-21. | MR | Zbl

[Wo] N.M.J. Woodhouse, Geometric Quantization, Clarendon Press, Oxford, 1980. | MR | Zbl

Cité par Sources :