Périodicité (mod q) des suites elliptiques et points S-entiers sur les courbes elliptiques
Annales de l'Institut Fourier, Volume 43 (1993) no. 3, pp. 585-618.

Let E be an elliptic curve defined over by a generalized Weierstrass equation:

y 2 + A 1 x y + A 3 y = x 3 + A 2 x 2 + A 4 x + A 6 ; A i .

Let M=(a/d 2 ,b/d 3 ), with (a,d)=1, be a rational point on this curve. For every integer m, we express the coordinates of mM in the form:

m M = ϕ m ( M ) ψ n 2 ( m ) , ω m ( M ) ψ m 3 ( M ) = ϕ ^ m d 2 ψ ^ m 2 , ω ^ m d 3 ψ ^ m 3 ,

where ϕ m ,ψ_m,ω m [A 1 ,,A 6 ,x,y] and ϕ ^ m , ψ ^ m , ω ^ m are obtained from these by multiplying by appropriate powers of d.

Let p be a rational odd prime and suppose that M( mod p) is non singular and that the rank of apparition of p in the sequence of integer (ψ ^ m ) is at least equal to three. Denote this rank by r=r(p) and let ν p (ψ ^ r )=e 0 1. We show that the sequence (ψ ^ m ) is periodic (mod p N ) for every N1. Denote this period by Π N , then there exists a rank N 1 effectively computable, 1N 1 e 0 , such that π 1 ==π N 1 and π N+1 =pπ N for NN 1 . These considerations are used to find S-integral points on elliptic curves.

Soit E une courbe elliptique sur par un modèle de Weierstrass généralisé :

y 2 + A 1 x y + A 3 y = x 3 + A 2 x 2 + A 4 x + A 6 ; A i .

Soit M=(a/d 2 ,b/d 3 ) avec (a,d)=1, un point rationnel sur cette courbe. Pour tout entier m, on exprime les coordonnées de mM sous la forme :

m M = ϕ m ( M ) ψ n 2 ( m ) , ω m ( M ) ψ m 3 ( M ) = ϕ ^ m d 2 ψ ^ m 2 , ω ^ m d 3 ψ ^ m 3 ,

ϕ m ,ψ_m,ω m [A 1 ,,A 6 ,x,y] et ϕ ^ m , ψ ^ m , ω ^ m sont déduits par multiplication par des puissances convenables de d.

Soit p un nombre premier impair et supposons que M( mod p) est non singulier et que le rang d’apparition de p dans la suite d’entiers (ψ ^ m ) est supérieur ou égal à trois. Notons ce rang par r=r(p) et soit ν p (ψ ^ r )=e 0 1. Nous montrons que la suite (ψ ^ m ) est périodique (mod p N ) pour tout N1. Notons cette période par π N , alors il existe un rang N 1 effectivement calculable, avec 1N 1 e 0 , tel que π 1 ==π N 1 et π N+1 =pπ N pour NN 1 . Ces considérations sont utilisées pour déterminer les points S-entiers sur les courbes elliptiques.

@article{AIF_1993__43_3_585_0,
     author = {Ayad, Mohamed},
     title = {P\'eriodicit\'e (mod $q$) des suites elliptiques et points $S$-entiers sur les courbes elliptiques},
     journal = {Annales de l'Institut Fourier},
     pages = {585--618},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {43},
     number = {3},
     year = {1993},
     doi = {10.5802/aif.1349},
     mrnumber = {94f:11009},
     zbl = {0781.11007},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.5802/aif.1349/}
}
TY  - JOUR
AU  - Ayad, Mohamed
TI  - Périodicité (mod $q$) des suites elliptiques et points $S$-entiers sur les courbes elliptiques
JO  - Annales de l'Institut Fourier
PY  - 1993
SP  - 585
EP  - 618
VL  - 43
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.1349/
DO  - 10.5802/aif.1349
LA  - fr
ID  - AIF_1993__43_3_585_0
ER  - 
%0 Journal Article
%A Ayad, Mohamed
%T Périodicité (mod $q$) des suites elliptiques et points $S$-entiers sur les courbes elliptiques
%J Annales de l'Institut Fourier
%D 1993
%P 585-618
%V 43
%N 3
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.1349/
%R 10.5802/aif.1349
%G fr
%F AIF_1993__43_3_585_0
Ayad, Mohamed. Périodicité (mod $q$) des suites elliptiques et points $S$-entiers sur les courbes elliptiques. Annales de l'Institut Fourier, Volume 43 (1993) no. 3, pp. 585-618. doi : 10.5802/aif.1349. http://archive.numdam.org/articles/10.5802/aif.1349/

[1] M. Ayad, Points S-entiers des courbes elliptiques, Manuscripta Math., 76 (1992), 305-324. | MR | Zbl

[2] R.A. Bateman, E.A. Clarck, M. Hancock, C.A. Reiter, The Period of Convergents modulo M of Reduced Quadratic Irrationals, Fibo. Quarterly, 29 (1991), 220-229. | MR | Zbl

[3] P.R.D. Carmichael, On Sequences of Integers defined by Recurrence Relations, Quarterly J. of Math., 48 (1920), 343-372.

[4] J.W.S. Cassels, The Rational Solutions of the Diophantine Equation y2 = x3 - D, Acta Math., 82 (1950), 243-273. | MR | Zbl

[5] A.T. Engstrom, On Sequences defined by Linear Recurrence Relations, Trans. A.M.S., 33 (1931), 210-218. | JFM | MR | Zbl

[6] M. Hall, An Isomorphism between Linear Recurring Sequences and Algebraic Rings, Trans. Amer. Math. Soc., 44 (1938), 196-218. | JFM | MR | Zbl

[7] E. Lutz, Sur l'équation y2 = x3 - Ax - B dans les corps p-adiques, J. Reine Angew. Math., 177 (1937), 237-247. | JFM | Zbl

[8] J. Pihko, A Note on a Theorem of Schinzel, Fibo. Quarterly, 29 (1991), 333-338. | MR | Zbl

[9] A. Schinzel, Special Lucas Sequences, including the Fibonacci Sequence modulo a Prime. In a tribute to Paul Erdos, A. Baker, B. Bollobas and A. Hajnal Ed., Cambridge University Press (1990), 349-357. | MR | Zbl

[10] D.D. Wall, Fibonacci Series modulo m, Amer. Math. Monthly, 67 (1960), 525-532. | MR | Zbl

[11] M. Ward, The Characteristic Number of a Sequence of Integers Satisfying a Linear Recursion Relation, Trans. Amer. Math. Soc., 33 (1931), 153-165. | JFM | MR | Zbl

[12] M. Ward, Memoir on Elliptic Divisibility Sequences, Amer. J. of Math., 70 (1948), 31-74. | MR | Zbl

[13] M. Ward, The Law of Repetition of Primes in an Elliptic Divisibility sequence, Duke Math. J., 15 (1948), 941-946. | MR | Zbl

[14] H.C. Williams, A Note on the Fibonacci Quotient Fp-ε/p, Canad. Math. Bull., 25 (1982), 366-370. | MR | Zbl

[15] Zhi-Hong Sun and Zhi-Wei Sun, Fibonacci Numbers and Fermat's Last Theorem, Acta Arith., 60 (1992), 371-388. | MR | Zbl

Cited by Sources: